Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1549
Title: Bi-Hamiltonian structures for integrable systems on regular time scales
Authors: Szablikowski, Blazej M.
Blaszak, Maciej
Silindir, Burcu
Keywords: functional analysis
Poisson equation
recursive functions
tensors
Operators
Algebra
Publisher: Amer Inst Physics
Abstract: A construction of the bi-Hamiltonian structures for integrable systems on regular time scales is presented. The trace functional on an algebra of delta-pseudodifferential operators, valid on an arbitrary regular time scale, is introduced. The linear Poisson tensors and the related Hamiltonians are derived. The quadratic Poisson tensors are given by the use of the recursion operators of the Lax hierarchies. The theory is illustrated by Delta-differential counterparts of Ablowitz-Kaup-Newell-Segur and Kaup-Broer hierarchies.
URI: https://doi.org/10.1063/1.3158860
https://hdl.handle.net/20.500.14365/1549
ISSN: 0022-2488
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
1549.pdf229.56 kBAdobe PDFView/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

5
checked on Nov 20, 2024

Page view(s)

68
checked on Nov 18, 2024

Download(s)

10
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.