Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1572
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkgunduz, Onur Serkan-
dc.contributor.authorTunali, Semra-
dc.date.accessioned2023-06-16T14:18:46Z-
dc.date.available2023-06-16T14:18:46Z-
dc.date.issued2011-
dc.identifier.issn0020-7543-
dc.identifier.issn1366-588X-
dc.identifier.urihttps://doi.org/10.1080/00207543.2010.495085-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1572-
dc.description.abstractA mixed-model assembly line (MMAL) is a type of production line which is capable of producing a variety of different product models simultaneously and continuously. The design and planning of such assembly lines involves several long-and short-term problems. Among these problems, determining the sequence of products to be produced has received considerable attention from the researchers. This problem is known as the Mixed-Model Assembly Line Sequencing Problem (MMALSP). An important issue that complicates the sequencing problem is its combinatorial nature. Typically, an enormous number of possible production sequences exist, even for relatively small problems, so that finding the optimal solution is usually impractical. Due to the complexity of the problem, in recent years, a growing number of researchers have employed genetic algorithms (GAs). This paper reviews the genetic algorithm based MMAL sequencing approaches presented in the literature and provides two hierarchical classification schemes to classify academic efforts according to both specifications of MMALSP and specifications of GA-based approaches. Moreover, future research directions have been identified and are suggested.en_US
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.ispartofInternatıonal Journal of Productıon Researchen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectmixed-model assembly lineen_US
dc.subjectsequencingen_US
dc.subjectmixed-model sequencingen_US
dc.subjectgenetic algorithmen_US
dc.subjectWork Overloaden_US
dc.subjectObjectivesen_US
dc.titleA review of the current applications of genetic algorithms in mixed-model assembly line sequencingen_US
dc.typeReview Articleen_US
dc.identifier.doi10.1080/00207543.2010.495085-
dc.identifier.scopus2-s2.0-79959229477en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorwosidtunali, semra/AAM-5058-2021-
dc.authorscopusid36164933500-
dc.authorscopusid7004191746-
dc.identifier.volume49en_US
dc.identifier.issue15en_US
dc.identifier.startpage4483en_US
dc.identifier.endpage4503en_US
dc.identifier.wosWOS:000291591300004en_US
dc.relation.publicationcategoryDiğeren_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextreserved-
item.openairetypeReview Article-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept03.02. Business Administration-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1572.pdf
  Restricted Access
338.37 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

26
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

22
checked on Nov 20, 2024

Page view(s)

64
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.