Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1598
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKasimbeyli̇, Refail-
dc.contributor.authorUstun, Ozden-
dc.contributor.authorRubinov, Alex M.-
dc.date.accessioned2023-06-16T14:18:50Z-
dc.date.available2023-06-16T14:18:50Z-
dc.date.issued2009-
dc.identifier.issn0233-1934-
dc.identifier.urihttps://doi.org/10.1080/02331930902928419-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1598-
dc.description.abstractIn this article, we continue to study the modified subgradient (MSG) algorithm previously suggested by Gasimov for solving the sharp augmented Lagrangian dual problems. The most important features of this algorithm are those that guarantees a global optimum for a wide class of non-convex optimization problems, generates a strictly increasing sequence of dual values, a property which is not shared by the other subgradient methods and guarantees convergence. The main drawbacks of MSG algorithm, which are typical for many subgradient algorithms, are those that uses an unconstrained global minimum of the augmented Lagrangian function and requires knowing an approximate upper bound of the initial problem to update stepsize parameters. In this study we introduce a new algorithm based on the so-called feasible values and give convergence theorems. The new algorithm does not require to know the optimal value initially and seeks it iteratively beginning with an arbitrary number. It is not necessary to find a global minimum of the augmented Lagrangian for updating the stepsize parameters in the new algorithm. A collection of test problems are used to demonstrate the performance of the new algorithm.en_US
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.ispartofOptımızatıonen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectnon-convex optimizationen_US
dc.subjectsharp augmented Lagrangianen_US
dc.subjectmodified subgradient algorithmen_US
dc.subjectF-MSG algorithmen_US
dc.subjectglobal optimizationen_US
dc.subjectOptimizationen_US
dc.subjectConstrainten_US
dc.titleThe modified subgradient algorithm based on feasible valuesen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/02331930902928419-
dc.identifier.scopus2-s2.0-70449377593en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridKasimbeyli OR Gasimov, Refail OR Rafail/0000-0002-7339-9409-
dc.authorwosidKasimbeyli OR Gasimov, Refail OR Rafail/AAA-4049-2020-
dc.authorscopusid35146065000-
dc.authorscopusid55911445000-
dc.authorscopusid7006482374-
dc.identifier.volume58en_US
dc.identifier.issue5en_US
dc.identifier.startpage535en_US
dc.identifier.endpage560en_US
dc.identifier.wosWOS:000269343900005en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ1-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.09. Industrial Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1598.pdf
  Restricted Access
391.4 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

38
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

30
checked on Nov 20, 2024

Page view(s)

44
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.