Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/1685
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kilic, Gokhan | - |
dc.contributor.author | Unluturk, Mehmet S. | - |
dc.date.accessioned | 2023-06-16T14:19:09Z | - |
dc.date.available | 2023-06-16T14:19:09Z | - |
dc.date.issued | 2015 | - |
dc.identifier.issn | 1058-9759 | - |
dc.identifier.issn | 1477-2671 | - |
dc.identifier.uri | https://doi.org/10.1080/10589759.2014.1002839 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/1685 | - |
dc.description.abstract | This paper describes the specific application of the non-destructive testing methods of visual inspection and ground penetrating radar (GPR) to a pedestrian bridge in Izmir, Turkey. The paper concentrates on the implementation of a deconvolution neural network (DNN) which is a procedure that employs neural network algorithms. By introducing collected GPR data to the DNN, the existence and location of cracks, rebar and moisture ingress on pedestrian pathways can reliably be located, thus providing superior information on which decisions relating to the functionality and life expectancy of a structure can be formulated. This study will be of benefit to engineers in providing a detailed and dependable assessment of the current state of structures such as pedestrian bridges. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Taylor & Francis Ltd | en_US |
dc.relation.ispartof | Nondestructıve Testıng And Evaluatıon | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | artificial neural network | en_US |
dc.subject | health monitoring and assessment | en_US |
dc.subject | pedestrian bridges | en_US |
dc.subject | ground penetrating radar | en_US |
dc.subject | back-propagation learning algorithm | en_US |
dc.subject | Time-Varying Deconvolution | en_US |
dc.subject | Gpr Data | en_US |
dc.subject | Blind Deconvolution | en_US |
dc.subject | Concrete | en_US |
dc.subject | Maximization | en_US |
dc.subject | Inspection | en_US |
dc.title | Corroboration of NDT and deconvolution neural networks for pedestrian bridge health assessment | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1080/10589759.2014.1002839 | - |
dc.identifier.scopus | 2-s2.0-84922763012 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | KILIC, GOKHAN/0000-0001-6928-226X | - |
dc.authorscopusid | 40761843000 | - |
dc.authorscopusid | 6508114835 | - |
dc.identifier.volume | 30 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 89 | en_US |
dc.identifier.endpage | 103 | en_US |
dc.identifier.wos | WOS:000349177200008 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q2 | - |
dc.identifier.wosquality | Q2 | - |
item.grantfulltext | reserved | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.03. Civil Engineering | - |
crisitem.author.dept | 05.04. Software Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
1685.pdf Restricted Access | 1.06 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
5
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
5
checked on Nov 20, 2024
Page view(s)
46
checked on Nov 18, 2024
Download(s)
6
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.