Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1685
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKilic, Gokhan-
dc.contributor.authorUnluturk, Mehmet S.-
dc.date.accessioned2023-06-16T14:19:09Z-
dc.date.available2023-06-16T14:19:09Z-
dc.date.issued2015-
dc.identifier.issn1058-9759-
dc.identifier.issn1477-2671-
dc.identifier.urihttps://doi.org/10.1080/10589759.2014.1002839-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1685-
dc.description.abstractThis paper describes the specific application of the non-destructive testing methods of visual inspection and ground penetrating radar (GPR) to a pedestrian bridge in Izmir, Turkey. The paper concentrates on the implementation of a deconvolution neural network (DNN) which is a procedure that employs neural network algorithms. By introducing collected GPR data to the DNN, the existence and location of cracks, rebar and moisture ingress on pedestrian pathways can reliably be located, thus providing superior information on which decisions relating to the functionality and life expectancy of a structure can be formulated. This study will be of benefit to engineers in providing a detailed and dependable assessment of the current state of structures such as pedestrian bridges.en_US
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.ispartofNondestructıve Testıng And Evaluatıonen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectartificial neural networken_US
dc.subjecthealth monitoring and assessmenten_US
dc.subjectpedestrian bridgesen_US
dc.subjectground penetrating radaren_US
dc.subjectback-propagation learning algorithmen_US
dc.subjectTime-Varying Deconvolutionen_US
dc.subjectGpr Dataen_US
dc.subjectBlind Deconvolutionen_US
dc.subjectConcreteen_US
dc.subjectMaximizationen_US
dc.subjectInspectionen_US
dc.titleCorroboration of NDT and deconvolution neural networks for pedestrian bridge health assessmenten_US
dc.typeArticleen_US
dc.identifier.doi10.1080/10589759.2014.1002839-
dc.identifier.scopus2-s2.0-84922763012en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridKILIC, GOKHAN/0000-0001-6928-226X-
dc.authorscopusid40761843000-
dc.authorscopusid6508114835-
dc.identifier.volume30en_US
dc.identifier.issue1en_US
dc.identifier.startpage89en_US
dc.identifier.endpage103en_US
dc.identifier.wosWOS:000349177200008en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ2-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.03. Civil Engineering-
crisitem.author.dept05.04. Software Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1685.pdf
  Restricted Access
1.06 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

5
checked on Nov 20, 2024

Page view(s)

46
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.