Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1761
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAhishali, Mete-
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorİnce, Türker-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T14:19:30Z-
dc.date.available2023-06-16T14:19:30Z-
dc.date.issued2021-
dc.identifier.issn1548-1603-
dc.identifier.issn1943-7226-
dc.identifier.urihttps://doi.org/10.1080/15481603.2020.1853948-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1761-
dc.description.abstractClassification of polarimetric synthetic aperture radar (PolSAR) images is an active research area with a major role in environmental applications. The traditional Machine Learning (ML) methods proposed in this domain generally focus on utilizing highly discriminative features to improve the classification performance, but this task is complicated by the well-known curse of dimensionality phenomena. Other approaches based on deep Convolutional Neural Networks (CNNs) have certain limitations and drawbacks, such as high computational complexity, an unfeasibly large training set with ground-truth labels, and special hardware requirements. In this work, to address the limitations of traditional ML and deep CNN-based methods, a novel and systematic classification framework is proposed for the classification of PolSAR images, based on a compact and adaptive implementation of CNNs using a sliding-window classification approach. The proposed approach has three advantages. First, there is no requirement for an extensive feature extraction process. Second, it is computationally efficient due to utilized compact configurations. In particular, the proposed compact and adaptive CNN model is designed to achieve the maximum classification accuracy with minimum training and computational complexity. This is of considerable importance considering the high costs involved in labeling in PolSAR classification. Finally, the proposed approach can perform classification using smaller window sizes than deep CNNs. Experimental evaluations have been performed over the most commonly used four benchmark PolSAR images: AIRSAR L-Band and RADARSAT-2 C-Band data of San Francisco Bay and Flevoland areas. Accordingly, the best obtained overall accuracies range between 92.33-99.39% for these benchmark study sites.en_US
dc.description.sponsorshipQatar National Libraryen_US
dc.description.sponsorshipOpen Access funding provided by the Qatar National Library.en_US
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.ispartofGıscıence & Remote Sensıngen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectClassificationen_US
dc.subjectconvolutional neural networksen_US
dc.subjectpolarimetric synthetic aperture radar (PolSAR)en_US
dc.subjectsliding windowen_US
dc.titleClassification of polarimetric SAR images using compact convolutional neural networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/15481603.2020.1853948-
dc.identifier.scopus2-s2.0-85097940905en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridGabbouj, Moncef/0000-0002-9788-2323-
dc.authoridkiranyaz, serkan/0000-0003-1551-3397-
dc.authoridİnce, Türker/0000-0002-8495-8958-
dc.authoridAhishali, Mete/0000-0003-0937-5194-
dc.authorwosidKiranyaz, Serkan/AAK-1416-2021-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.authorscopusid57201466019-
dc.authorscopusid7801632948-
dc.authorscopusid56259806600-
dc.authorscopusid7005332419-
dc.identifier.volume58en_US
dc.identifier.issue1en_US
dc.identifier.startpage28en_US
dc.identifier.endpage47en_US
dc.identifier.wosWOS:000601030200001en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1761.pdf13.01 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

22
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

19
checked on Nov 20, 2024

Page view(s)

242
checked on Nov 18, 2024

Download(s)

20
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.