Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1806
Title: Solutions of the Gaudin equation and Gaudin algebras
Authors: Balantekin, AB
Dereli, T
Pehlivan, Yamac
Keywords: Models
Publisher: Iop Publishing Ltd
Abstract: Three well-known solutions of the Gaudin equation are obtained under a set of standard assumptions. By relaxing one of these assumptions, we introduce a class of mutually commuting Hamiltonians based on a different solution of the Gaudin equation. Application of the algebraic Bethe ansatz technique to diagonalize these Hamiltonians reveals a new infinite-dimensional complex Lie algebra.
URI: https://doi.org/10.1088/0305-4470/38/25/007
https://hdl.handle.net/20.500.14365/1806
ISSN: 0305-4470
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
1806.pdf163.72 kBAdobe PDFView/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

12
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

10
checked on Nov 20, 2024

Page view(s)

72
checked on Nov 18, 2024

Download(s)

16
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.