Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1817
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOğuz Ekim, Pınar-
dc.date.accessioned2023-06-16T14:24:59Z-
dc.date.available2023-06-16T14:24:59Z-
dc.date.issued2021-
dc.identifier.issn1092-8758-
dc.identifier.issn1557-9018-
dc.identifier.urihttps://doi.org/10.1089/ees.2020.0232-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1817-
dc.description.abstractMunicipal solid waste (MSW) generation forecasting can be considered as the biggest challenge of integrated solid waste management systems, particularly for developing countries where data collection is limited. In this study, three different machine learning algorithms, namely backpropagation neural network (BPNN), support vector regression (SVR), and general regression neural network, were applied for different countries. Comparative evaluation of these different algorithms based on gross domestic product, domestic material consumption, and resource productivity were given through the optimum solution. Moreover, the algorithms were tested for the case of Turkey. The results of this study are expected to represent a general outline for stakeholders of Turkey for improving MSW management strategies all over the country, and these results can be extended to similar developing countries across the world. It can be concluded that BPNN and SVR methods can be applied successfully for the case of Turkey and other countries across the world to predict the MSW generation, whereas BPNN is slightly better. If the input and output variables are identified well, machine learning approaches can give a good projection for waste generation, and this projection can be utilized for different countries. Furthermore, the developing countries with missing data can develop more realistic strategies for MSW management by not relying solely on international databases such as Eurostat to forecast MSW generation.en_US
dc.language.isoenen_US
dc.publisherMary Ann Liebert, Incen_US
dc.relation.ispartofEnvıronmental Engıneerıng Scıenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectartificial neural networksen_US
dc.subjectbackpropagation neural networken_US
dc.subjectgeneral regression neural networken_US
dc.subjectmachine learning approachesen_US
dc.subjectsupport vector regressionen_US
dc.subjectwaste generation forecastingen_US
dc.subjectSupport Vector Machineen_US
dc.subjectNeural-Networksen_US
dc.subjectPredictionen_US
dc.subjectManagementen_US
dc.titleMachine Learning Approaches for Municipal Solid Waste Generation Forecastingen_US
dc.typeArticleen_US
dc.identifier.doi10.1089/ees.2020.0232-
dc.identifier.scopus2-s2.0-85108295684en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid36608964400-
dc.identifier.volume38en_US
dc.identifier.issue6en_US
dc.identifier.startpage489en_US
dc.identifier.endpage499en_US
dc.identifier.wosWOS:000590944800001en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityQ4-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

25
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

17
checked on Nov 20, 2024

Page view(s)

104
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.