Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1880
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVuruşkan, Arzu-
dc.contributor.authorİnce, Türker-
dc.contributor.authorBulgun, Ender-
dc.contributor.authorGuzelis, Cuneyt-
dc.date.accessioned2023-06-16T14:25:10Z-
dc.date.available2023-06-16T14:25:10Z-
dc.date.issued2015-
dc.identifier.issn0955-6222-
dc.identifier.issn1758-5953-
dc.identifier.urihttps://doi.org/10.1108/IJCST-02-2014-0022-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1880-
dc.description.abstractPurpose - The purpose of this paper is to develop an intelligent system for fashion style selection for non-standard female body shapes. Design/methodology/approach - With the goal of creating natural aesthetic relationship between the body shape and the shape of clothing, garments designed for the upper and lower body are combined to fit different female body shapes, which are classified as V, A, H and O-shapes. The proposed intelligent system combines genetic algorithm (GA) with a neural network classifier, which is trained using the particle swarm optimization (PSO). The former, called genetic search, is used to find the optimal design parameters corresponding to a best fit for the desired target, while the task of the latter, called neural classification, is to evaluate fitness (goodness) of each evolved new fashion style. Findings - The experimental results are fashion styling recommendations for the four female body shapes, drawn from 260 possible combinations, based on variations from 15 attributes. These results are considered to be a strong indication of the potential benefits of the application of intelligent systems to fashion styling. Originality/value - The proposed intelligent system combines the effective searching capabilities of two approaches. The first approach uses the GA for identifying best fits to the target shape of the body in the solution space. The second is the PSO for finding optimal (with respect to training mean-squared error) weight and threshold parameters of the neural classifier, which is able to evaluate the fitness of successively evolved fashion styles.en_US
dc.language.isoenen_US
dc.publisherEmerald Group Publishing Ltden_US
dc.relation.ispartofInternatıonal Journal of Clothıng Scıence And Technologyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectParticle swarm optimizationen_US
dc.subjectGenetic algorithmen_US
dc.subjectFashion designen_US
dc.subjectFemale body shapesen_US
dc.subjectNeural networksen_US
dc.subjectStyling recommendationen_US
dc.subjectExpert-Systemen_US
dc.subjectDesignen_US
dc.titleIntelligent fashion styling using genetic search and neural classificationen_US
dc.typeArticleen_US
dc.identifier.doi10.1108/IJCST-02-2014-0022-
dc.identifier.scopus2-s2.0-84927785731en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridVuruşkan, Arzu/0000-0003-1478-0442-
dc.authoridİnce, Türker/0000-0002-8495-8958-
dc.authorscopusid37056657100-
dc.authorscopusid56259806600-
dc.authorscopusid12793953400-
dc.authorscopusid55937768800-
dc.identifier.volume27en_US
dc.identifier.issue2en_US
dc.identifier.startpage283en_US
dc.identifier.endpage301en_US
dc.identifier.wosWOS:000354647100010en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityQ3-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept06.02. Fashion and Textile Design-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
crisitem.author.dept06.02. Fashion and Textile Design-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1880.pdf
  Restricted Access
889.14 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

17
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

16
checked on Nov 20, 2024

Page view(s)

74
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.