Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1916
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOz, Ibrahim Onur-
dc.contributor.authorYelkenci, Tezer-
dc.date.accessioned2023-06-16T14:25:18Z-
dc.date.available2023-06-16T14:25:18Z-
dc.date.issued2017-
dc.identifier.issn0307-4358-
dc.identifier.issn1758-7743-
dc.identifier.urihttps://doi.org/10.1108/MF-03-2016-0084-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1916-
dc.description.abstractPurpose - The purpose of this paper is to examine a theoretical base for the financial distress prediction modeling over eight countries for a sample of 2,500 publicly listed non-financial firms for the period from 2000 to 2014. Design/methodology/approach - The prediction model derived through the theory has the potential to produce prediction results that are generalizable over distinct industry and country samples. For this reason, the prediction model is on the earnings components, and it uses two different estimation methods and four sub-samples to examine the validity of the results. Findings - The findings suggest that the theoretical model provides high-level prediction accuracy through its earnings components. The use of a large sample from different industries in distinct countries increases the validity of the prediction results, and contributes to the generalizability of the predictionmodel in distinct sectors. Originality/value - The results of the study fulfill the gap and extend the literature through a distress model, which has the theoretical origin enabling the generalization of the prediction results over different samples and estimation methods.en_US
dc.language.isoenen_US
dc.publisherEmerald Group Publishing Ltden_US
dc.relation.ispartofManagerıal Fınanceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAccounting theoryen_US
dc.subjectModellingen_US
dc.subjectFinancial distressen_US
dc.subjectGeneralizabilityen_US
dc.subjectBankruptcy Predictionen_US
dc.subjectDiscriminant-Analysisen_US
dc.subjectNeural-Networksen_US
dc.subjectCredit Risken_US
dc.subjectCash Flowsen_US
dc.subjectFailureen_US
dc.subjectRatiosen_US
dc.subjectInformationen_US
dc.subjectAccrualsen_US
dc.subjectFirmsen_US
dc.titleA theoretical approach to financial distress prediction modelingen_US
dc.typeArticleen_US
dc.identifier.doi10.1108/MF-03-2016-0084-
dc.identifier.scopus2-s2.0-85011695836en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridOz, Ibrahim Onur/0000-0001-8699-1770-
dc.authorscopusid56455145900-
dc.authorscopusid56455368000-
dc.identifier.volume43en_US
dc.identifier.issue2en_US
dc.identifier.startpage212en_US
dc.identifier.endpage230en_US
dc.identifier.wosWOS:000397243600005en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1916.pdf
  Restricted Access
187.42 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

16
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

10
checked on Nov 20, 2024

Page view(s)

72
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.