Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/1916
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Oz, Ibrahim Onur | - |
dc.contributor.author | Yelkenci, Tezer | - |
dc.date.accessioned | 2023-06-16T14:25:18Z | - |
dc.date.available | 2023-06-16T14:25:18Z | - |
dc.date.issued | 2017 | - |
dc.identifier.issn | 0307-4358 | - |
dc.identifier.issn | 1758-7743 | - |
dc.identifier.uri | https://doi.org/10.1108/MF-03-2016-0084 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/1916 | - |
dc.description.abstract | Purpose - The purpose of this paper is to examine a theoretical base for the financial distress prediction modeling over eight countries for a sample of 2,500 publicly listed non-financial firms for the period from 2000 to 2014. Design/methodology/approach - The prediction model derived through the theory has the potential to produce prediction results that are generalizable over distinct industry and country samples. For this reason, the prediction model is on the earnings components, and it uses two different estimation methods and four sub-samples to examine the validity of the results. Findings - The findings suggest that the theoretical model provides high-level prediction accuracy through its earnings components. The use of a large sample from different industries in distinct countries increases the validity of the prediction results, and contributes to the generalizability of the predictionmodel in distinct sectors. Originality/value - The results of the study fulfill the gap and extend the literature through a distress model, which has the theoretical origin enabling the generalization of the prediction results over different samples and estimation methods. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Emerald Group Publishing Ltd | en_US |
dc.relation.ispartof | Managerıal Fınance | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Accounting theory | en_US |
dc.subject | Modelling | en_US |
dc.subject | Financial distress | en_US |
dc.subject | Generalizability | en_US |
dc.subject | Bankruptcy Prediction | en_US |
dc.subject | Discriminant-Analysis | en_US |
dc.subject | Neural-Networks | en_US |
dc.subject | Credit Risk | en_US |
dc.subject | Cash Flows | en_US |
dc.subject | Failure | en_US |
dc.subject | Ratios | en_US |
dc.subject | Information | en_US |
dc.subject | Accruals | en_US |
dc.subject | Firms | en_US |
dc.title | A theoretical approach to financial distress prediction modeling | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1108/MF-03-2016-0084 | - |
dc.identifier.scopus | 2-s2.0-85011695836 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Oz, Ibrahim Onur/0000-0001-8699-1770 | - |
dc.authorscopusid | 56455145900 | - |
dc.authorscopusid | 56455368000 | - |
dc.identifier.volume | 43 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 212 | en_US |
dc.identifier.endpage | 230 | en_US |
dc.identifier.wos | WOS:000397243600005 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q2 | - |
item.grantfulltext | reserved | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
1916.pdf Restricted Access | 187.42 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
16
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
10
checked on Nov 20, 2024
Page view(s)
72
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.