Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1929
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİnce, Türker-
dc.contributor.authorMalik, Junaid-
dc.contributor.authorDevecioglu, Ozer Can-
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorAvcı, Onur-
dc.contributor.authorEren, Levent-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T14:25:21Z-
dc.date.available2023-06-16T14:25:21Z-
dc.date.issued2021-
dc.identifier.issn2169-3536-
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2021.3117603-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1929-
dc.description.abstractPreventive maintenance of modern electric rotating machinery (RM) is critical for ensuring reliable operation, preventing unpredicted breakdowns and avoiding costly repairs. Recently many studies investigated machine learning monitoring methods especially based on Deep Learning networks focusing mostly on detecting bearing faults; however, none of them addressed bearing fault severity classification for early fault diagnosis with high enough accuracy. 1D Convolutional Neural Networks (CNNs) have indeed achieved good performance for detecting RM bearing faults from raw vibration and current signals but did not classify fault severity. Furthermore, recent studies have demonstrated the limitation in terms of learning capability of conventional CNNs attributed to the basic underlying linear neuron model. Recently, Operational Neural Networks (ONNs) were proposed to enhance the learning capability of CNN by introducing non-linear neuron models and further heterogeneity in the network configuration. In this study, we propose 1D Self-organized ONNs (Self-ONNs) with generative neurons for bearing fault severity classification and providing continuous condition monitoring. Experimental results over the benchmark NSF/IMS bearing vibration dataset using both x- and y-axis vibration signals for inner race and rolling element faults demonstrate that the proposed 1D Self-ONNs achieve significant performance gap against the state-of-the-art (1D CNNs) with similar computational complexity.en_US
dc.description.sponsorshipDanfoss; Konecranes; Raute within Business Finlanden_US
dc.description.sponsorshipThis work was supported in part by Danfoss, Konecranes and Raute within Business Finland funded INDEX Program.en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Accessen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectNeuronsen_US
dc.subjectComputational modelingen_US
dc.subjectVibrationsen_US
dc.subjectTrainingen_US
dc.subjectConvolutional neural networksen_US
dc.subjectConvolutionen_US
dc.subjectMathematical modelsen_US
dc.subjectConvolutional neural networksen_US
dc.subjectoperational neural networksen_US
dc.subjectearly bearing fault detectionen_US
dc.subjectfault severity classificationen_US
dc.subjectcondition monitoring of rotating elementsen_US
dc.subjectmachine health monitoringen_US
dc.subjectMotorsen_US
dc.subjectSignalen_US
dc.subjectModelen_US
dc.titleEarly Bearing Fault Diagnosis of Rotating Machinery by 1D Self-Organized Operational Neural Networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2021.3117603-
dc.identifier.scopus2-s2.0-85117470469en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridEren, Levent/0000-0002-5804-436X-
dc.authoridGabbouj, Moncef/0000-0002-9788-2323-
dc.authoridİnce, Türker/0000-0002-8495-8958-
dc.authoridMalik, Hafiz Muhammad Junaid/0000-0002-2750-4028-
dc.authoridAvcı, Onur/0000-0003-0221-7126-
dc.authoridkiranyaz, serkan/0000-0003-1551-3397-
dc.authoridDevecioglu, Ozer Can/0000-0002-9810-622X-
dc.authorwosidEren, Levent/T-2245-2019-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.authorwosidAvcı, Onur/L-9803-2015-
dc.authorscopusid56259806600-
dc.authorscopusid57201589931-
dc.authorscopusid57215653815-
dc.authorscopusid7801632948-
dc.authorscopusid6701761980-
dc.authorscopusid6603027663-
dc.authorscopusid7005332419-
dc.identifier.volume9en_US
dc.identifier.startpage139260en_US
dc.identifier.endpage139270en_US
dc.identifier.wosWOS:000707438600001en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1929.pdf2.1 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

23
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

16
checked on Nov 20, 2024

Page view(s)

260
checked on Nov 18, 2024

Download(s)

30
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.