Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1930
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDevecioglu, Ozer Can-
dc.contributor.authorMalik, Junaid-
dc.contributor.authorİnce, Türker-
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorAtalay, Eray-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T14:25:22Z-
dc.date.available2023-06-16T14:25:22Z-
dc.date.issued2021-
dc.identifier.issn2169-3536-
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2021.3118102-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1930-
dc.description.abstractGlaucoma leads to permanent vision disability by damaging the optical nerve that transmits visual images to the brain. The fact that glaucoma does not show any symptoms as it progresses and cannot be stopped at the later stages, makes it critical to be diagnosed in its early stages. Although various deep learning models have been applied for detecting glaucoma from digital fundus images, due to the scarcity of labeled data, their generalization performance was limited along with high computational complexity and special hardware requirements. In this study, compact Self-Organized Operational Neural Networks (Self-ONNs) are proposed for early detection of glaucoma in fundus images and their performance is compared against the conventional (deep) Convolutional Neural Networks (CNNs) over three benchmark datasets: ACRIMA, RIM-ONE, and ESOGU. The experimental results demonstrate that Self-ONNs not only achieve superior detection performance but can also significantly reduce the computational complexity making it a potentially suitable network model for biomedical datasets especially when the data is scarce.en_US
dc.description.sponsorshipAcademy of Finland AWCHA project; Haltian Stroke-Data projecten_US
dc.description.sponsorshipThis work was supported in part by the Academy of Finland AWCHA, and in part by the Haltian Stroke-Data projects.en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Accessen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectNeuronsen_US
dc.subjectOptical imagingen_US
dc.subjectFeature extractionen_US
dc.subjectBiomedical optical imagingen_US
dc.subjectImage segmentationen_US
dc.subjectBiological system modelingen_US
dc.subjectComputational modelingen_US
dc.subjectConvolutional neural networksen_US
dc.subjectglaucoma detectionen_US
dc.subjectmedical image processingen_US
dc.subjectoperational neural networksen_US
dc.subjecttransfer learningen_US
dc.subjectOpen-Angle Glaucomaen_US
dc.subjectNeuronal Diversityen_US
dc.subjectPrevalenceen_US
dc.subjectDiagnosisen_US
dc.subjectNetworken_US
dc.titleReal-Time Glaucoma Detection From Digital Fundus Images Using Self-ONNsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2021.3118102-
dc.identifier.scopus2-s2.0-85118196905en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridGabbouj, Moncef/0000-0002-9788-2323-
dc.authoridAtalay, Eray/0000-0002-2536-4279-
dc.authoridİnce, Türker/0000-0002-8495-8958-
dc.authoridDevecioglu, Ozer Can/0000-0002-9810-622X-
dc.authoridMalik, Hafiz Muhammad Junaid/0000-0002-2750-4028-
dc.authoridkiranyaz, serkan/0000-0003-1551-3397-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.authorwosidAtalay, Eray/O-5377-2018-
dc.authorscopusid57215653815-
dc.authorscopusid57201589931-
dc.authorscopusid56259806600-
dc.authorscopusid7801632948-
dc.authorscopusid55128286700-
dc.authorscopusid7005332419-
dc.identifier.volume9en_US
dc.identifier.startpage140031en_US
dc.identifier.endpage140041en_US
dc.identifier.wosWOS:000709084100001en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1930.pdf1.71 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

42
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

25
checked on Nov 20, 2024

Page view(s)

240
checked on Nov 18, 2024

Download(s)

26
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.