Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1938
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCandemir, Cemre-
dc.contributor.authorOguz, Kaya-
dc.date.accessioned2023-06-16T14:25:23Z-
dc.date.available2023-06-16T14:25:23Z-
dc.date.issued2017-
dc.identifier.isbn978-1-5386-2085-4-
dc.identifier.urihttps://doi.org/10.1109/EECS.2017.48-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1938-
dc.descriptionEuropean Conference on Electrical Engineering and Computer Science (EECS) -- NOV 17-19, 2017 -- Bern, SWITZERLANDen_US
dc.description.abstractChange point analysis is an efficient method for understanding the unexpected behaviour of the data used in many different disciplines. Although the literature contains a variety of change point analysis methods, there are relatively fewer studies that focus on the performance of parameter selection and outlier removal that are applied on real data sets. In this study two methods based on regression and statistical properties are proposed and compared with a method using Bayesian approach to evaluate their performance on the selection of parameters and removal of outliers. The methods are executed using different parameters on the well-log data set with and without outliers that are removed either manually or automatically. The results show that different data sets require different parameters to locate their change points. The proposed methods have intuitive parameters to control the algorithm, run faster, and do not require any assumptions to be made such as maximum number of change points. These properties also make them good candidates for online change point analysis.en_US
dc.description.sponsorshipEge University Scientific Research Projects Coordination Unit [17-UBE-001]en_US
dc.description.sponsorshipThis study was supported by Ege University Scientific Research Projects Coordination Unit (Project Number: 17-UBE-001).en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2017 European Conference on Electrıcal Engıneerıng And Computer Scıence (Eecs)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectchange point problemen_US
dc.subjectbroken regressionen_US
dc.subjectBayesian change pointen_US
dc.subjectmean changesen_US
dc.subjectSupport Vector Machineen_US
dc.subjectBayesian-Analysisen_US
dc.subjectRegressionen_US
dc.subjectInferenceen_US
dc.subjectModelen_US
dc.subjectNumberen_US
dc.titleA Comparative Study on Parameter Selection and Outlier Removal for Change Point Detection in Time Seriesen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/EECS.2017.48-
dc.identifier.scopus2-s2.0-85050962752en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridOguz, Kaya/0000-0002-1860-9127-
dc.authoridCandemir, Cemre/0000-0001-9850-137X-
dc.authorwosidOguz, Kaya/A-1812-2016-
dc.authorwosidCandemir, Cemre/U-5824-2019-
dc.authorscopusid55807447100-
dc.authorscopusid54902980200-
dc.identifier.startpage218en_US
dc.identifier.endpage224en_US
dc.identifier.wosWOS:000455867600040en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.05. Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1938.pdf
  Restricted Access
191.07 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 20, 2024

Page view(s)

88
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.