Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1957
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGhani, Muhammad Usman-
dc.contributor.authorArgunsach, Ali Ozgur-
dc.contributor.authorIsraely, Inbal-
dc.contributor.authorUnay, Devrim-
dc.contributor.authorTasdizen, Tolga-
dc.contributor.authorCetin, Mujdat-
dc.date.accessioned2023-06-16T14:25:28Z-
dc.date.available2023-06-16T14:25:28Z-
dc.date.issued2016-
dc.identifier.isbn978-1-4799-2349-6-
dc.identifier.isbn978-1-4799-2350-2-
dc.identifier.issn1945-7928-
dc.identifier.urihttps://doi.org/10.1109/ISBI.2016.7493278-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1957-
dc.description13th IEEE International Symposium on Biomedical Imaging (ISBI) -- APR 13-16, 2016 -- Prague, CZECH REPUBLICen_US
dc.description.abstractDendritic spines are one of the key functional components of neurons. Their morphological changes are correlated with neuronal activity. Neuroscientists study spine shape variations to understand their relation with neuronal activity. Currently this analysis performed manually, the availability of reliable automated tools would assist neuroscientists and accelerate this research. Previously, morphological features based spine analysis has been performed and reported in the literature. In this paper, we explore the idea of using and comparing manifold learning techniques for classifying spine shapes. We start with automatically segmented data and construct our feature vector by stacking and concatenating the columns of images. Further, we apply unsupervised manifold learning algorithms and compare their performance in the context of dendritic spine classification. We achieved 85.95% accuracy on a dataset of 242 automatically segmented mushroom and stubby spines. We also observed that ISOMAP implicitly computes prominent features suitable for classification purposes.en_US
dc.description.sponsorshipIEEE,EMB,IEEE Signal Proc Soc,Amer Elementsen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2016 Ieee 13Th Internatıonal Symposıum on Bıomedıcal Imagıng (Isbı)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDendritic Spinesen_US
dc.subjectClassificationen_US
dc.subjectManifold Learningen_US
dc.subjectISOMAPen_US
dc.subjectMicroscopic Imagingen_US
dc.subjectNeuroimagingen_US
dc.titleON COMPARISON OF MANIFOLD LEARNING TECHNIQUES FOR DENDRITIC SPINE CLASSIFICATIONen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ISBI.2016.7493278-
dc.identifier.scopus2-s2.0-84978396705en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridArgunşah, Ali Özgür/0000-0002-3082-3775-
dc.authoridUnay, Devrim/0000-0003-3478-7318-
dc.authoridGhani, Muhammad Usman/0000-0002-6411-423X-
dc.authoridCetin, Mujdat/0000-0002-9824-1229-
dc.authoridTasdizen, Tolga/0000-0001-6574-0366-
dc.authoridIsraely, Inbal/0000-0001-7234-6359-
dc.authorwosidUnay, Devrim/G-6002-2010-
dc.authorwosidArgunşah, Ali Özgür/AAF-7464-2019-
dc.authorwosidGhani, Muhammad Usman/I-7434-2019-
dc.authorwosidUnay, Devrim/AAE-6908-2020-
dc.authorscopusid43561269300-
dc.authorscopusid24723512300-
dc.authorscopusid24511960600-
dc.authorscopusid55922238900-
dc.authorscopusid6602852406-
dc.authorscopusid35561229800-
dc.identifier.startpage339en_US
dc.identifier.endpage342en_US
dc.identifier.wosWOS:000386377400082en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.02. Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1957.pdf
  Restricted Access
1.27 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 20, 2024

Page view(s)

94
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.