Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/1968
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Izci, Elif | - |
dc.contributor.author | Ozdemir, Mehmet Akif | - |
dc.contributor.author | Akan, Aydin | - |
dc.contributor.author | Ozcoban, Mehmet Akif | - |
dc.contributor.author | Arikan, Mehmet Kemal | - |
dc.date.accessioned | 2023-06-16T14:31:04Z | - |
dc.date.available | 2023-06-16T14:31:04Z | - |
dc.date.issued | 2021 | - |
dc.identifier.isbn | 978-1-6654-3649-6 | - |
dc.identifier.uri | https://doi.org/10.1109/SIU53274.2021.9477800 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/1968 | - |
dc.description | 29th IEEE Conference on Signal Processing and Communications Applications (SIU) -- JUN 09-11, 2021 -- ELECTR NETWORK | en_US |
dc.description.abstract | Major depressive disorder (MDD) is a common mood disorder encountered worldwide. Early diagnosis has great importance to prevent the negative effects on the person. The aim of this study is to develop an objective method to differentiate MDD patients from healthy controls. Electroencephalography (EEG) signals taken from 16 MDD patients and 16 healthy subjects are analyzed according to the regions of the brain, and time-domain, frequency-domain, and nonlinear features were extracted. The feature sets are classified using five different classification algorithms. As a result of the study, a classification accuracy of 89.5% was yielded using the Bagging classifier with 7 features calculated from the central EEG channels. | en_US |
dc.description.sponsorship | IEEE,IEEE Turkey Sect | en_US |
dc.language.iso | tr | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 29Th Ieee Conference on Sıgnal Processıng And Communıcatıons Applıcatıons (Sıu 2021) | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Depression | en_US |
dc.subject | Electroencephalography | en_US |
dc.subject | Signal processing | en_US |
dc.subject | Classification | en_US |
dc.title | An EEG and Machine Learning based Method for the Detection of Major Depressive Disorder | en_US |
dc.title.alternative | Majör depresif bozuklu?un tespiti için EEG ve makine ö?renmesi tabanli bir yöntem | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/SIU53274.2021.9477800 | - |
dc.identifier.scopus | 2-s2.0-85111447341 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Ozdemir, Mehmet Akif/0000-0002-8758-113X | - |
dc.authorid | İzci, Elif/0000-0003-1148-8374 | - |
dc.authorwosid | Ozdemir, Mehmet Akif/G-7952-2018 | - |
dc.authorwosid | İzci, Elif/GOE-6084-2022 | - |
dc.authorscopusid | 57206467904 | - |
dc.authorscopusid | 57206479576 | - |
dc.authorscopusid | 35617283100 | - |
dc.authorscopusid | 35181765100 | - |
dc.authorscopusid | 26423493800 | - |
dc.identifier.wos | WOS:000808100700043 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.grantfulltext | reserved | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | tr | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
1968.pdf Restricted Access | 339.7 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
1
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
2
checked on Nov 20, 2024
Page view(s)
110
checked on Nov 18, 2024
Download(s)
6
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.