Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1980
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİnce, Türker-
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorEren, Levent-
dc.contributor.authorAskar, Murat-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T14:31:06Z-
dc.date.available2023-06-16T14:31:06Z-
dc.date.issued2016-
dc.identifier.issn0278-0046-
dc.identifier.issn1557-9948-
dc.identifier.urihttps://doi.org/10.1109/TIE.2016.2582729-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1980-
dc.description.abstractEarly detection of the motor faults is essential and artificial neural networks are widely used for this purpose. The typical systems usually encapsulate two distinct blocks: feature extraction and classification. Such fixed and hand-crafted features may be a suboptimal choice and require a significant computational cost that will prevent their usage for real-time applications. In this paper, we propose a fast and accurate motor condition monitoring and early fault-detection system using 1-D convolutional neural networks that has an inherent adaptive design to fuse the feature extraction and classification phases of the motor fault detection into a single learning body. The proposed approach is directly applicable to the raw data (signal), and, thus, eliminates the need for a separate feature extraction algorithm resulting in more efficient systems in terms of both speed and hardware. Experimental results obtained using real motor data demonstrate the effectiveness of the proposed method for real-time motor condition monitoring.en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Transactıons on Industrıal Electronıcsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConvolutional neural networks (CNNs)en_US
dc.subjectmotor current signature analysis (MCSA)en_US
dc.subjectBearing Damage Detectionen_US
dc.subjectDiagnosisen_US
dc.subjectSignalen_US
dc.subjectDecompositionen_US
dc.subjectSensorlessen_US
dc.subjectModelen_US
dc.titleReal-Time Motor Fault Detection by 1-D Convolutional Neural Networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TIE.2016.2582729-
dc.identifier.scopus2-s2.0-84994474581en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridAskar, Murat/0000-0001-9244-3340-
dc.authoridEren, Levent/0000-0002-5804-436X-
dc.authoridGabbouj, Moncef/0000-0002-9788-2323-
dc.authorwosidAskar, Murat/E-7377-2017-
dc.authorwosidEren, Levent/T-2245-2019-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.authorwosidKiranyaz, Serkan/AAK-1416-2021-
dc.authorscopusid56259806600-
dc.authorscopusid7801632948-
dc.authorscopusid6603027663-
dc.authorscopusid7003498558-
dc.authorscopusid7005332419-
dc.identifier.volume63en_US
dc.identifier.issue11en_US
dc.identifier.startpage7067en_US
dc.identifier.endpage7075en_US
dc.identifier.wosWOS:000388622100042en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1980.pdf
  Restricted Access
917.24 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1,168
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

933
checked on Nov 20, 2024

Page view(s)

292
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.