Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1984
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCicek, Gulay-
dc.contributor.authorAkan, Aydin-
dc.date.accessioned2023-06-16T14:31:06Z-
dc.date.available2023-06-16T14:31:06Z-
dc.date.issued2021-
dc.identifier.isbn978-1-6654-3663-2-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO53239.2021.9632940-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1984-
dc.descriptionMedical Technologies Congress (TIPTEKNO'21) -- NOV 04-06, 2021 -- Antalya, TURKEYen_US
dc.description.abstractMagnetic resonance is the imaging method that stands out in the evaluation of textures and diseases related to brain. The information about metabolic, biochemical and hemodynamic structure of the brain is obtained by magnetic resonance imaging. Attention Deficit Hyperactivity Disorder (ADHD) is a psychiatric disease and, if not treated, its effects may spread over all lifetime and cause significant academic, social, and psychiatric problems. High-accuracy and objective tools need to be developed for classification of ADHD. In this study, we present machine learning (ML) and deep learning (DL) based approaches for the classification of MR Images collected from ADHD patients. We generate a new 2D texture from 3-D structural magnetic resonance image by combining slices where gray and white matter clearly displayed. In the first approach, we extract Haralick texture based features, and HOG features and classify ADHD using ML methods such as Decision Tree, K nearest neighbor, Naive Bayes, Logistic Regression, and Support Vector Machine. In the DL approach, we trained four Convolutional Neural Network (CNN) structures (AlexNet, VGGNet, ResNet and GoogleNet) for ADHD classification using the 2-D texture images. Classification performance obtained with ResNet architecture in characterizing new texture is 100 % accuracy, 100 % sensitivity, 100 % specificity.en_US
dc.description.sponsorshipBiyomedikal Klinik Muhendisligi Dernegi,Izmir Ekonomi Univen_US
dc.description.sponsorshipIzmir Katip Celebi University Scientific Research Projects Coordination Unit [2019-GAP-MUMF-003, 2017-ONAP-MUMF-0002]en_US
dc.description.sponsorshipThis work was supported by Izmir Katip Celebi University Scientific Research Projects Coordination Unit: Project numbers 2019-GAP-MUMF-003 and 2017-ONAP-MUMF-0002. We would like to thank Doc.Dr. Baris Metin, Neurology Specialist at NPIstanbul NeuroPsychiatric Hospital for his assistance and for providing MR Data.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofTıp Teknolojılerı Kongresı (Tıptekno'21)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAttention Deficit Hyperactivity Disorderen_US
dc.subjectstructural magnetic resonance imagingen_US
dc.subjectmachine learningen_US
dc.subjectdeep learningen_US
dc.subjectCNNen_US
dc.titleDeep Learning Approach Versus Traditional Machine Learning for ADHD Classificationen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO53239.2021.9632940-
dc.identifier.scopus2-s2.0-85123675531en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridCICEK, GULAY/0000-0002-6607-1181-
dc.authorwosidCICEK, GULAY/AGB-0289-2022-
dc.authorscopusid57211992616-
dc.authorscopusid35617283100-
dc.identifier.wosWOS:000903766500028en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1984.pdf
  Restricted Access
372.29 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 20, 2024

Page view(s)

84
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.