Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1987
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCura, Ozlem Karabiber-
dc.contributor.authorYilmaz, Gulce Cosku-
dc.contributor.authorTure, Hatice Sabiha-
dc.contributor.authorAkan, Aydin-
dc.date.accessioned2023-06-16T14:31:07Z-
dc.date.available2023-06-16T14:31:07Z-
dc.date.issued2021-
dc.identifier.isbn978-1-6654-3663-2-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO53239.2021.9633007-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1987-
dc.descriptionMedical Technologies Congress (TIPTEKNO'21) -- NOV 04-06, 2021 -- Antalya, TURKEYen_US
dc.description.abstractNeurological disorders may spring from any disorder in the brain or the central and autonomic nervous systems. Among the neurological disorders, while Alzheimer's disease and other dementias are the fourth-largest contributors of disabilityadjusted life years, they are the second largest contributor of deaths. In the proposed study, various signal decomposition methods such as EMD, EEMD, and DWT are presented to classify EEG segments of control subjects and Alzheimer' dementia patients. Time-domain features are calculated using selected 7 IMFs and 5 detail and approximation coefficients of DWT. Various classification techniques namely Decision Tree (DT), Support Vector Machine (SVM), k- Nearest Neighbor (kNN), and Random Forest (RF) are utilized to distinguish two groups. Simulation results demonstrate that the proposed approaches achieve outstanding validation accuracy rates.en_US
dc.description.sponsorshipBiyomedikal Klinik Muhendisligi Dernegi,Izmir Ekonomi Univen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofTıp Teknolojılerı Kongresı (Tıptekno'21)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAlzheimer' dementiaen_US
dc.subjectEmpirical ModeDecompositionen_US
dc.subjectEnsemble Empirical Mode Decompositionen_US
dc.subjectDiscrete Wavelet Transformen_US
dc.subjectEEG classification.en_US
dc.subjectEeg Background Activityen_US
dc.subjectPermutation Entropyen_US
dc.subjectDisease Patientsen_US
dc.subjectComplexityen_US
dc.subjectConnectivityen_US
dc.titleClassification of Alzheimers' Dementia by Using Various Signal Decomposition Methodsen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO53239.2021.9633007-
dc.identifier.scopus2-s2.0-85123715545en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57195223021-
dc.authorscopusid57419670500-
dc.authorscopusid16644499400-
dc.authorscopusid35617283100-
dc.identifier.wosWOS:000903766500055en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1987.pdf
  Restricted Access
945.05 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 20, 2024

Page view(s)

84
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.