Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/1988
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Okur, Erdem | - |
dc.contributor.author | Turkan, Mehmet | - |
dc.date.accessioned | 2023-06-16T14:31:07Z | - |
dc.date.available | 2023-06-16T14:31:07Z | - |
dc.date.issued | 2022 | - |
dc.identifier.isbn | 978-1-6654-5432-2 | - |
dc.identifier.uri | https://doi.org/10.1109/TIPTEKNO56568.2022.9960153 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/1988 | - |
dc.description | Medical Technologies Congress (TIPTEKNO) -- OCT 31-NOV 02, 2022 -- Antalya, TURKEY | en_US |
dc.description.abstract | Melanoma is a skin cancer caused by the ultraviolet radiation from the sun. If it is not detected at early stages, melanoma will become severe and more importantly it may spread to the other body organs, most commonly to the lungs, brain, liver and bones. Dermatologists look for the tell tales on the pigmented lesions (moles) on the skin to detect melanoma, or for some cases discriminate it from other skin diseases. Unfortunately, imprecise subjective analysis may result in the form of a series of biopsies which maybe not needed. Furthermore, this type of imprecision may allow a melanoma case to grow without a notice. To overcome this challenge, an automatic melanoma detection system is proposed in this study. The developed approach is based on Bag of Visual Words (BoVW) which includes both traditional and new age methods. Experimental comparisons between this novel approach and well-known convolutional neural network models show the effectiveness of the proposed model. | en_US |
dc.description.sponsorship | Biyomedikal Klinik Muhendisligi Dernegi,Izmir Ekonomi Univ | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2022 Medıcal Technologıes Congress (Tıptekno'22) | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Melanoma | en_US |
dc.subject | skin cancer | en_US |
dc.subject | lesion | en_US |
dc.subject | Bag of Visual Words | en_US |
dc.title | Melanoma Detection in Dermoscopic Images: A Bag of Visual Words Approach | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/TIPTEKNO56568.2022.9960153 | - |
dc.identifier.scopus | 2-s2.0-85144036490 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Turkan, Mehmet/0000-0002-9780-9249 | - |
dc.authorwosid | Turkan, Mehmet/AGQ-8084-2022 | - |
dc.authorscopusid | 57195215602 | - |
dc.authorscopusid | 57219464962 | - |
dc.identifier.wos | WOS:000903709700009 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.grantfulltext | reserved | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.04. Software Engineering | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
1988.pdf Restricted Access | 302.56 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
1
checked on Nov 20, 2024
Page view(s)
92
checked on Nov 18, 2024
Download(s)
6
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.