Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1989
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCura, Ozlem Karabiber-
dc.contributor.authorYilmaz, Gulce C.-
dc.contributor.authorTure, H. Sabiha-
dc.contributor.authorAkan, Aydin-
dc.date.accessioned2023-06-16T14:31:07Z-
dc.date.available2023-06-16T14:31:07Z-
dc.date.issued2022-
dc.identifier.isbn978-1-6654-5432-2-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO56568.2022.9960155-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1989-
dc.descriptionMedical Technologies Congress (TIPTEKNO) -- OCT 31-NOV 02, 2022 -- Antalya, TURKEYen_US
dc.description.abstractAlzheimer's Dementia (AD), one of the age-related neurological disorders, causes loss of cognitive functions and seriously affects the daily life of patients. Electroencephalogram (EEG) is one of the most frequently used clinical tools to investigate the effects of AD on the brain. In the proposed study, a time-frequency representation and deep feature extraction based model is introduced to distinguish EEG segments of control subjects and AD patients. TF representations of EEG segments are obtained using high-resolution SynchroSqueezing Transform (SST), and conventional short-time Fourier transform (STFT) methods. The magnitudes of SST and STFT are used for deep feature extraction. Various classifiers are used to classify the extracted features to distinguish the EEG segments of control subjects and AD patients. STFT based deep feature extraction approach yielded better classification results than that of the SST method.en_US
dc.description.sponsorshipBiyomedikal Klinik Muhendisligi Dernegi,Izmir Ekonomi Univen_US
dc.description.sponsorshipIzmir Katip Celebi University Scientific Research Projects Coordination Unit [2019-TDR-FEBE-0005]en_US
dc.description.sponsorshipThis study was supported by Izmir Katip Celebi University Scientific Research Projects Coordination Unit. Project number 2019-TDR-FEBE-0005.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2022 Medıcal Technologıes Congress (Tıptekno'22)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAlzheimer's Dementiaen_US
dc.subjectEEGen_US
dc.subjectSSTen_US
dc.subjectSTFTen_US
dc.subjectTime-Frequency Analysisen_US
dc.subjectdeep feature extractionen_US
dc.titleDeep Time-Frequency Feature Extraction for Alzheimer's Dementia EEG Classificationen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO56568.2022.9960155-
dc.identifier.scopus2-s2.0-85144033320en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57195223021-
dc.authorscopusid57419670500-
dc.authorscopusid16644499400-
dc.authorscopusid35617283100-
dc.identifier.wosWOS:000903709700011en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1989.pdf
  Restricted Access
2.56 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 20, 2024

Page view(s)

94
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.