Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1991
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGeckin, Duygu-
dc.contributor.authorDemir, Guleser Kalayci-
dc.date.accessioned2023-06-16T14:31:07Z-
dc.date.available2023-06-16T14:31:07Z-
dc.date.issued2022-
dc.identifier.isbn978-1-6654-5432-2-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO56568.2022.9960159-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1991-
dc.descriptionMedical Technologies Congress (TIPTEKNO) -- OCT 31-NOV 02, 2022 -- Antalya, TURKEYen_US
dc.description.abstractProteins are complex macromolecules and participate in nearly every process within the living cells. They generally make physicochemical connections and complex structures called protein-protein interactions (PPIs) to carry out their specific functions. The PPIs play essential roles in cellular processes and regulate various cellular functions such as signal transduction, recognition of foreign molecules, and immune response. Additionally, they have a high potential for drug discovery applications, treatment design, and understanding of disease mechanisms. Therefore, it is crucial to identify PPIs rapidly and accurately. In this study, we aim to investigate the performance of the convolutional Siamese neural network approach for the prediction of PPIs by only using the sequence information of proteins. We encoded protein sequences using three different protein representation methodologies: Binary Representation, Auto Covariance (AC), and Position Specific Scoring Matrices (PSSM). Results show that the PSSM method gives better accuracy than the other two encoding methods. Also, we have presented that the implemented convolutional Siamese neural network approach improves sequence-based PPI prediction.en_US
dc.description.sponsorshipBiyomedikal Klinik Muhendisligi Dernegi,Izmir Ekonomi Univen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2022 Medıcal Technologıes Congress (Tıptekno'22)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectProtein-protein interactionen_US
dc.subjectSiamese neural networken_US
dc.subjectPosition Specific Scoring Matricesen_US
dc.subjectAuto Covarianceen_US
dc.subjectBinary Representationen_US
dc.subjectAuto Covarianceen_US
dc.titleSequence Based Prediction of Protein-Protein Interactions via Siamese Neural Networksen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO56568.2022.9960159-
dc.identifier.scopus2-s2.0-85144033210en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid58017444400-
dc.authorscopusid57205638987-
dc.identifier.wosWOS:000903709700015en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.02. Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1991.pdf
  Restricted Access
274.97 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

80
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.