Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/1991
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Geckin, Duygu | - |
dc.contributor.author | Demir, Guleser Kalayci | - |
dc.date.accessioned | 2023-06-16T14:31:07Z | - |
dc.date.available | 2023-06-16T14:31:07Z | - |
dc.date.issued | 2022 | - |
dc.identifier.isbn | 978-1-6654-5432-2 | - |
dc.identifier.uri | https://doi.org/10.1109/TIPTEKNO56568.2022.9960159 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/1991 | - |
dc.description | Medical Technologies Congress (TIPTEKNO) -- OCT 31-NOV 02, 2022 -- Antalya, TURKEY | en_US |
dc.description.abstract | Proteins are complex macromolecules and participate in nearly every process within the living cells. They generally make physicochemical connections and complex structures called protein-protein interactions (PPIs) to carry out their specific functions. The PPIs play essential roles in cellular processes and regulate various cellular functions such as signal transduction, recognition of foreign molecules, and immune response. Additionally, they have a high potential for drug discovery applications, treatment design, and understanding of disease mechanisms. Therefore, it is crucial to identify PPIs rapidly and accurately. In this study, we aim to investigate the performance of the convolutional Siamese neural network approach for the prediction of PPIs by only using the sequence information of proteins. We encoded protein sequences using three different protein representation methodologies: Binary Representation, Auto Covariance (AC), and Position Specific Scoring Matrices (PSSM). Results show that the PSSM method gives better accuracy than the other two encoding methods. Also, we have presented that the implemented convolutional Siamese neural network approach improves sequence-based PPI prediction. | en_US |
dc.description.sponsorship | Biyomedikal Klinik Muhendisligi Dernegi,Izmir Ekonomi Univ | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2022 Medıcal Technologıes Congress (Tıptekno'22) | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Protein-protein interaction | en_US |
dc.subject | Siamese neural network | en_US |
dc.subject | Position Specific Scoring Matrices | en_US |
dc.subject | Auto Covariance | en_US |
dc.subject | Binary Representation | en_US |
dc.subject | Auto Covariance | en_US |
dc.title | Sequence Based Prediction of Protein-Protein Interactions via Siamese Neural Networks | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/TIPTEKNO56568.2022.9960159 | - |
dc.identifier.scopus | 2-s2.0-85144033210 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorscopusid | 58017444400 | - |
dc.authorscopusid | 57205638987 | - |
dc.identifier.wos | WOS:000903709700015 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.grantfulltext | reserved | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.02. Biomedical Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
1991.pdf Restricted Access | 274.97 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
Page view(s)
80
checked on Nov 18, 2024
Download(s)
6
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.