Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/1996
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Akbugday, Burak | - |
dc.contributor.author | Akan, Aydin | - |
dc.contributor.author | Pehlivan, Sude | - |
dc.contributor.author | Sadighzadeh, Reza | - |
dc.date.accessioned | 2023-06-16T14:31:08Z | - |
dc.date.available | 2023-06-16T14:31:08Z | - |
dc.date.issued | 2022 | - |
dc.identifier.isbn | 978-1-6654-5432-2 | - |
dc.identifier.uri | https://doi.org/10.1109/TIPTEKNO56568.2022.9960190 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/1996 | - |
dc.description | Medical Technologies Congress (TIPTEKNO) -- OCT 31-NOV 02, 2022 -- Antalya, TURKEY | en_US |
dc.description.abstract | The sense of smell is one of the oldest senses of humankind and is able to provide valuable information from the mood of a person to purchase intention. In this study, five non-linear features; 3 Hjorth Parameters namely, activity, complexity, and mobility, Higuchi's Fractal Dimension, and Lempel-Ziv Complexity were used to differentiate EEG signals of participants with or without being subjected to olfactory stimuli using several machine learning methods. Experimental results were compared to our previous study where classification was performed using EEG sub-band powers. It was concluded that non-linear features were superior in differentiating olfactory stimuli, especially for frontal, temporal, and occipital channels. | en_US |
dc.description.sponsorship | Biyomedikal Klinik Muhendisligi Dernegi,Izmir Ekonomi Univ | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2022 Medıcal Technologıes Congress (Tıptekno'22) | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | electroencephalogram (EEG) | en_US |
dc.subject | neuromarketing | en_US |
dc.subject | olfactory stimulus | en_US |
dc.subject | machine learning | en_US |
dc.subject | Higuchi fractal dimension | en_US |
dc.subject | Hjorth parameters | en_US |
dc.subject | Lempel-Ziv complexity | en_US |
dc.title | An Assessment of Linear and Nonlinear Features for Detecting Olfactory Stimulus in EEG | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/TIPTEKNO56568.2022.9960190 | - |
dc.identifier.scopus | 2-s2.0-85144060778 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorscopusid | 57211987353 | - |
dc.authorscopusid | 35617283100 | - |
dc.authorscopusid | 57215310544 | - |
dc.authorscopusid | 57203171366 | - |
dc.identifier.wos | WOS:000903709700045 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.grantfulltext | reserved | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
crisitem.author.dept | 05.02. Biomedical Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
1996.pdf Restricted Access | 216.89 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
1
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
1
checked on Nov 20, 2024
Page view(s)
82
checked on Nov 18, 2024
Download(s)
6
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.