Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1996
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkbugday, Burak-
dc.contributor.authorAkan, Aydin-
dc.contributor.authorPehlivan, Sude-
dc.contributor.authorSadighzadeh, Reza-
dc.date.accessioned2023-06-16T14:31:08Z-
dc.date.available2023-06-16T14:31:08Z-
dc.date.issued2022-
dc.identifier.isbn978-1-6654-5432-2-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO56568.2022.9960190-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1996-
dc.descriptionMedical Technologies Congress (TIPTEKNO) -- OCT 31-NOV 02, 2022 -- Antalya, TURKEYen_US
dc.description.abstractThe sense of smell is one of the oldest senses of humankind and is able to provide valuable information from the mood of a person to purchase intention. In this study, five non-linear features; 3 Hjorth Parameters namely, activity, complexity, and mobility, Higuchi's Fractal Dimension, and Lempel-Ziv Complexity were used to differentiate EEG signals of participants with or without being subjected to olfactory stimuli using several machine learning methods. Experimental results were compared to our previous study where classification was performed using EEG sub-band powers. It was concluded that non-linear features were superior in differentiating olfactory stimuli, especially for frontal, temporal, and occipital channels.en_US
dc.description.sponsorshipBiyomedikal Klinik Muhendisligi Dernegi,Izmir Ekonomi Univen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2022 Medıcal Technologıes Congress (Tıptekno'22)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectelectroencephalogram (EEG)en_US
dc.subjectneuromarketingen_US
dc.subjectolfactory stimulusen_US
dc.subjectmachine learningen_US
dc.subjectHiguchi fractal dimensionen_US
dc.subjectHjorth parametersen_US
dc.subjectLempel-Ziv complexityen_US
dc.titleAn Assessment of Linear and Nonlinear Features for Detecting Olfactory Stimulus in EEGen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO56568.2022.9960190-
dc.identifier.scopus2-s2.0-85144060778en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57211987353-
dc.authorscopusid35617283100-
dc.authorscopusid57215310544-
dc.authorscopusid57203171366-
dc.identifier.wosWOS:000903709700045en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
crisitem.author.dept05.02. Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1996.pdf
  Restricted Access
216.89 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 20, 2024

Page view(s)

82
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.