Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1998
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCura, Ozlem Karabiber-
dc.contributor.authorAydin, Gamze N.-
dc.contributor.authorCelen, Sibel-
dc.contributor.authorAtli, Sibel Kocaaslan-
dc.contributor.authorAkan, Aydin-
dc.date.accessioned2023-06-16T14:31:08Z-
dc.date.available2023-06-16T14:31:08Z-
dc.date.issued2022-
dc.identifier.isbn978-1-6654-5432-2-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO56568.2022.9960193-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1998-
dc.descriptionMedical Technologies Congress (TIPTEKNO) -- OCT 31-NOV 02, 2022 -- Antalya, TURKEYen_US
dc.description.abstractAttention Deficit Hyperactivity Disorder (ADHD) is a neurological disease that typically appears in childhood. The disease has three main symptoms in children: inattention, hyperactivity, and impulsivity. Treatment of the disease is based on behavioral studies; however, there is no definitive diagnosis method. Hence, the electroencephalography (EEG) signals of ADHD subjects are often investigated to understand changes in the brain. In the proposed study, it is aimed to process and reduce the EEG data of ADHD and control subjects (CS) by using the Douglas-Peucker algorithm and to investigate the effects of the algorithm on EEG signal analysis. EEG data obtained from 18 control subjects (4 boys, 14 girls, mean age 13) and 15 ADHD patients (7 boys, 8 girls, mean age 12) are collected. By using reduced EEG data; time features such as energy, skewness, kurtosis, mean absolute deviation (MAD), root mean square (RMS), peak to peak (PTP) value, Hjorth parameters, and non-linear features such as largest Lyapunov Exponent (LLE), correlation dimension (CD), Hurst exponent (HE), Katz fractal dimension (KFD), Higuchi fractal dimension (HFD), are calculated to examine different signal characteristics. Extracted features are used to distinguish the EEG data of ADHD and CS by using various machine learning algorithms.en_US
dc.description.sponsorshipBiyomedikal Klinik Muhendisligi Dernegi,Izmir Ekonomi Univen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2022 Medıcal Technologıes Congress (Tıptekno'22)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectADHDen_US
dc.subjectEEGen_US
dc.subjectDouglas-Peucker Algorithmen_US
dc.subjectFeature extractionen_US
dc.subjectMachine learningen_US
dc.subjectDeficit/Hyperactivity Disorderen_US
dc.subjectChildrenen_US
dc.subjectGenderen_US
dc.titleDetection of Attention Deficit Hyperactivity Disorder Using EEG Signals and Douglas-Peucker Algorithmen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO56568.2022.9960193-
dc.identifier.scopus2-s2.0-85144092069en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57195223021-
dc.authorscopusid58018530000-
dc.authorscopusid58017867900-
dc.authorscopusid56709608600-
dc.authorscopusid35617283100-
dc.identifier.wosWOS:000903709700048en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1998.pdf
  Restricted Access
574.48 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

80
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.