Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/1998
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cura, Ozlem Karabiber | - |
dc.contributor.author | Aydin, Gamze N. | - |
dc.contributor.author | Celen, Sibel | - |
dc.contributor.author | Atli, Sibel Kocaaslan | - |
dc.contributor.author | Akan, Aydin | - |
dc.date.accessioned | 2023-06-16T14:31:08Z | - |
dc.date.available | 2023-06-16T14:31:08Z | - |
dc.date.issued | 2022 | - |
dc.identifier.isbn | 978-1-6654-5432-2 | - |
dc.identifier.uri | https://doi.org/10.1109/TIPTEKNO56568.2022.9960193 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/1998 | - |
dc.description | Medical Technologies Congress (TIPTEKNO) -- OCT 31-NOV 02, 2022 -- Antalya, TURKEY | en_US |
dc.description.abstract | Attention Deficit Hyperactivity Disorder (ADHD) is a neurological disease that typically appears in childhood. The disease has three main symptoms in children: inattention, hyperactivity, and impulsivity. Treatment of the disease is based on behavioral studies; however, there is no definitive diagnosis method. Hence, the electroencephalography (EEG) signals of ADHD subjects are often investigated to understand changes in the brain. In the proposed study, it is aimed to process and reduce the EEG data of ADHD and control subjects (CS) by using the Douglas-Peucker algorithm and to investigate the effects of the algorithm on EEG signal analysis. EEG data obtained from 18 control subjects (4 boys, 14 girls, mean age 13) and 15 ADHD patients (7 boys, 8 girls, mean age 12) are collected. By using reduced EEG data; time features such as energy, skewness, kurtosis, mean absolute deviation (MAD), root mean square (RMS), peak to peak (PTP) value, Hjorth parameters, and non-linear features such as largest Lyapunov Exponent (LLE), correlation dimension (CD), Hurst exponent (HE), Katz fractal dimension (KFD), Higuchi fractal dimension (HFD), are calculated to examine different signal characteristics. Extracted features are used to distinguish the EEG data of ADHD and CS by using various machine learning algorithms. | en_US |
dc.description.sponsorship | Biyomedikal Klinik Muhendisligi Dernegi,Izmir Ekonomi Univ | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2022 Medıcal Technologıes Congress (Tıptekno'22) | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | ADHD | en_US |
dc.subject | EEG | en_US |
dc.subject | Douglas-Peucker Algorithm | en_US |
dc.subject | Feature extraction | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Deficit/Hyperactivity Disorder | en_US |
dc.subject | Children | en_US |
dc.subject | Gender | en_US |
dc.title | Detection of Attention Deficit Hyperactivity Disorder Using EEG Signals and Douglas-Peucker Algorithm | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/TIPTEKNO56568.2022.9960193 | - |
dc.identifier.scopus | 2-s2.0-85144092069 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorscopusid | 57195223021 | - |
dc.authorscopusid | 58018530000 | - |
dc.authorscopusid | 58017867900 | - |
dc.authorscopusid | 56709608600 | - |
dc.authorscopusid | 35617283100 | - |
dc.identifier.wos | WOS:000903709700048 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.grantfulltext | reserved | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
1998.pdf Restricted Access | 574.48 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
Page view(s)
80
checked on Nov 18, 2024
Download(s)
6
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.