Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2003
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBonyani, Mahdi-
dc.contributor.authorYeganli, Faezeh-
dc.contributor.authorYeganli, S. Faegheh-
dc.date.accessioned2023-06-16T14:31:09Z-
dc.date.available2023-06-16T14:31:09Z-
dc.date.issued2022-
dc.identifier.isbn978-1-6654-5432-2-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO56568.2022.9960227-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2003-
dc.descriptionMedical Technologies Congress (TIPTEKNO) -- OCT 31-NOV 02, 2022 -- Antalya, TURKEYen_US
dc.description.abstractBreast cancer is one of the main causes of death across the world in women. Early diagnosis of this type of cancer is critical for treatment and patient care. In this paper, we propose a fast and interpretable deep learning-based pipeline for automatic detection of the metastatic tissues in breast histopathological images. Firstly, the proposed pipeline uses multiple preprocessing and data augmentation techniques to reduce over-fitting. Then, the proposed pipeline employs one - cycle policy technique in the pre-trained convolutional neural networks model in shallow and deep fine-tuning phases to find the optimal values. Finally, gradient-weighted class activation mapping (Grad-CAM) technique is utilized to produce a coarse localization map of the important regions in the image. Experiments on the PatchCamelyon dataset demonstrate the superior classification performance of the proposed method over the state-of-the-art.en_US
dc.description.sponsorshipBiyomedikal Klinik Muhendisligi Dernegi,Izmir Ekonomi Univen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2022 Medıcal Technologıes Congress (Tıptekno'22)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBreast Canceren_US
dc.subjectDeep Learningen_US
dc.subjectGrad-CAMen_US
dc.subjectHistopathologicalen_US
dc.subjectOne - Cycleen_US
dc.subjectEnsembleen_US
dc.titleFast and Interpretable Deep Learning Pipeline for Breast Cancer Recognitionen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO56568.2022.9960227-
dc.identifier.scopus2-s2.0-85144025782en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57223301352-
dc.authorscopusid56247299800-
dc.authorscopusid57194275954-
dc.identifier.wosWOS:000903709700081en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2003.pdf
  Restricted Access
2.47 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 20, 2024

Page view(s)

76
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.