Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2004
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKisa, Deniz Hande-
dc.contributor.authorYildirim, Muhiddin Ceyhun-
dc.contributor.authorOzdil, Belkis-
dc.contributor.authorOzdemir, Mehmet Akif-
dc.contributor.authorGuren, Onan-
dc.contributor.authorAkan, Aydin-
dc.date.accessioned2023-06-16T14:31:09Z-
dc.date.available2023-06-16T14:31:09Z-
dc.date.issued2022-
dc.identifier.isbn978-1-6654-5432-2-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO56568.2022.9960235-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2004-
dc.descriptionMedical Technologies Congress (TIPTEKNO) -- OCT 31-NOV 02, 2022 -- Antalya, TURKEYen_US
dc.description.abstractA variety of artificial intelligence (AI) approaches are applied for the classification of hand movements in systems that use electromyography (EMG), which measures the electrical activity of muscles. In AI approaches, machine learning (ML) is frequently preferred and researched for this classification issue. In this study, hand gesture classification was performed with ML algorithms using EMGs of 10 hand movements. Features were extracted from the time domain (TD), frequency domain (FD), time-frequency domain (TFD) (via Wavelet-based Synchrosqueezing Transform), and Fractional Fourier Transform (FrFT) domain. After training 31 ML models with all features, Subspace k-Nearest Neighbor (kNN), which is ensemble-based learning, was determined as the best model. This model was trained with different feature and channel combinations, and the classification performances were examined as channel-based and domain-based, separately. In all cases, an accuracy of 97.10% was obtained as the highest via the TD-FD-FrFT domain feature combination, including all channels. When all the results are examined, an alternative classification approach is presented to the literature by proving that the computational load decreases while the accuracy value increases by determining and utilizing the channels and features that contain more related information about hand movement.en_US
dc.description.sponsorshipBiyomedikal Klinik Muhendisligi Dernegi,Izmir Ekonomi Univen_US
dc.description.sponsorshipIzmir Katip Celebi University Scientific Research Projects Coordination Unit [2022-GAP-MUMF-0001]en_US
dc.description.sponsorshipThis work was supported by the Izmir Katip Celebi University Scientific Research Projects Coordination Unit [grant number 2022-GAP-MUMF-0001].en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2022 Medıcal Technologıes Congress (Tıptekno'22)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectElectromyographyen_US
dc.subjecthand gestureen_US
dc.subjectwavelet-based synchrosqueezing transformen_US
dc.subjectfractional Fourier transformen_US
dc.subjectmachine learningen_US
dc.subjectchannel selectionen_US
dc.subjectfeature selectionen_US
dc.titleInvestigating the Effect of Signal Channels and Features in Various Domains on the EMG-based Hand Gesture Classificationen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO56568.2022.9960235-
dc.identifier.scopus2-s2.0-85144039215en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridOzdemir, Mehmet Akif/0000-0002-8758-113X-
dc.authorwosidOzdemir, Mehmet Akif/G-7952-2018-
dc.authorscopusid57221554803-
dc.authorscopusid58018761700-
dc.authorscopusid58018322000-
dc.authorscopusid57206479576-
dc.authorscopusid56364720900-
dc.authorscopusid35617283100-
dc.identifier.wosWOS:000903709700088en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2004.pdf
  Restricted Access
939.9 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 20, 2024

Page view(s)

94
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.