Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2006
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAvcı, Umut-
dc.contributor.authorAran, Oya-
dc.date.accessioned2023-06-16T14:31:09Z-
dc.date.available2023-06-16T14:31:09Z-
dc.date.issued2016-
dc.identifier.issn1520-9210-
dc.identifier.issn1941-0077-
dc.identifier.urihttps://doi.org/10.1109/TMM.2016.2521348-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2006-
dc.description.abstractThis paper addresses the problem of predicting the performance of decision-making groups. Towards this goal, we evaluate the predictive power of group attributes and discussion dynamics by using automatically extracted features, such as group members' aural and visual cues, interaction between team members, and influence of each team member, as well as self-reported features such as personality- and perception-related cues, hierarchical structure of the group, and individual- and group-level task performances. We tackle the inference problem from two angles depending on the way that features are extracted: 1) a holistic approach based on the entire meeting, and 2) a sequential approach based on the thin slices of the meeting. In the former, key factors affecting the group performance are identified and the prediction is achieved by support vector machines. As for the latter, we compare and contrast the classification performance of an influence model-based novel classifier with that of hidden Markov model (HMM). Experimental results indicate that the group looking cues and the influence cues are major predictors of group performance and the influence model outperforms the HMM in almost all experimental conditions. We also show that combining classifiers covering unique aspects of data results in improvement in the classification performance.en_US
dc.description.sponsorshipSwiss National Science Foundation (SNSF) Ambizione fellowship under SOBE project [PZ00P2_136811]en_US
dc.description.sponsorshipThis work was supported by the Swiss National Science Foundation (SNSF) Ambizione fellowship under the SOBE project (PZ00P2_136811). The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Qi Tian.en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Transactıons on Multımedıaen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGroup performance analysisen_US
dc.subjectmultimodal interactionen_US
dc.subjectsocial computingen_US
dc.subjectNonverbal Behavioren_US
dc.subjectTeam Performanceen_US
dc.subjectRolesen_US
dc.subjectMetaanalysisen_US
dc.subjectPersonalityen_US
dc.subjectRecognitionen_US
dc.titlePredicting the Performance in Decision-Making Tasks: From Individual Cues to Group Interactionen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TMM.2016.2521348-
dc.identifier.scopus2-s2.0-84963864964en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridAran, Oya/0000-0002-4679-9335-
dc.authorscopusid35486827300-
dc.authorscopusid15062392700-
dc.identifier.volume18en_US
dc.identifier.issue4en_US
dc.identifier.startpage643en_US
dc.identifier.endpage658en_US
dc.identifier.wosWOS:000372790300008en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2006.pdf
  Restricted Access
994.59 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

32
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

28
checked on Nov 20, 2024

Page view(s)

62
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.