Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2134
Title: STOKER'S THEOREM FOR ORTHOGONAL POLYHEDRA
Authors: Biedl, Therese
Genç, Burkay
Keywords: Computational geometry
combinatorial problems
algorithms
theory of computation
Publisher: World Scientific Publ Co Pte Ltd
Abstract: Stoker's theorem states that in a convex polyhedron, the dihedral angles and edge lengths determine the facial angles if the graph is fixed. In this paper, we study under what conditions Stoker's theorem holds for orthogonal polyhedra, obtaining uniqueness and a linear-time algorithm in some cases, and NP-hardness in others.
URI: https://doi.org/10.1142/S0218195911003718
https://hdl.handle.net/20.500.14365/2134
ISSN: 0218-1959
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
2134.pdf
  Until 2030-01-01
391.37 kBAdobe PDFView/Open    Request a copy
Show full item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

Page view(s)

40
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.