Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2143
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOner, Tahsin-
dc.contributor.authorKatıcan Tuğçe-
dc.contributor.authorSaeid, Arsham Borumand-
dc.date.accessioned2023-06-16T14:31:34Z-
dc.date.available2023-06-16T14:31:34Z-
dc.date.issued2022-
dc.identifier.issn1793-0057-
dc.identifier.issn1793-7027-
dc.identifier.urihttps://doi.org/10.1142/S1793005723500369-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2143-
dc.descriptionArticle; Early Accessen-US
dc.description.abstractThe main objective of the study is to introduce a hesitant fuzzy structures on Sheffer stroke BCK-algebras related to their subsets (subalgebras as possible as). Then it is proved that every hesitant fuzzy ideal of a Sheffer stroke BCK-algebra related to the subset is the hesitant fuzzy subalgebra. By defining a hesitant fuzzy maximal ideal in this algebra, relationships between aforementioned structures, subalgebras and ideals on Sheffer stroke BCK-algebras are shown in detail. Finally, it is illustrated that a subset of a Sheffer stroke BCK-algebra defined by a certain element and a hesitant fuzzy (maximal) ideal on the algebra is a (maximal) ideal but the inverse is usually not true.en_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publ Co Pte Ltden_US
dc.relation.ispartofNew Mathematıcs And Natural Computatıonen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSheffer strokeen_US
dc.subjectBCK-algebraen_US
dc.subject(hesitant fuzzy) subalgebraen_US
dc.subject((hesitant fuzzy) maximal) idealen_US
dc.subjectSeten_US
dc.titleHesitant Fuzzy Structures on Sheffer Stroke BCK-Algebrasen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S1793005723500369-
dc.identifier.scopus2-s2.0-85144536294en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid6505910883-
dc.authorscopusid57200450829-
dc.authorscopusid57544895900-
dc.identifier.wosWOS:000895827100001en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ4-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Mathematics-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

108
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.