Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/2148
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Unluturk, Sevcan | - |
dc.contributor.author | Unluturk, Mehmet S. | - |
dc.contributor.author | Pazir, Fikret | - |
dc.contributor.author | Kuscu, Alper | - |
dc.date.accessioned | 2023-06-16T14:31:35Z | - |
dc.date.available | 2023-06-16T14:31:35Z | - |
dc.date.issued | 2011 | - |
dc.identifier.issn | 1687-6172 | - |
dc.identifier.uri | https://doi.org/10.1155/2011/290950 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/2148 | - |
dc.description.abstract | This study utilized a feed-forward neural network model along with computer vision techniques to discriminate sweet red pepper products prepared by different methods such as freezing and pureeing. The differences among the fresh, frozen and pureed samples are investigated by studying their bio-crystallogram images. The dissimilarity in visually analyzed bio-crystallogram images are defined as the distribution of crystals on the circular glass underlay and the thin or the thick structure of crystal needles. However, the visual description and definition of bio-crystallogram images has major disadvantages. A methodology called process neural network (ProcNN) has been studied to overcome these shortcomings. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Hindawi Publishing Corporation | en_US |
dc.relation.ispartof | Eurasıp Journal on Advances in Sıgnal Processıng | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.title | Process Neural Network Method: Case Study I: Discrimination of Sweet Red Peppers Prepared by Different Methods | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1155/2011/290950 | - |
dc.identifier.scopus | 2-s2.0-79955018842 | - |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | unluturk, sevcan/0000-0002-0501-4714 | - |
dc.authorwosid | Kuşçu, Alper/E-1943-2015 | - |
dc.authorwosid | unluturk, sevcan/AAG-4207-2019 | - |
dc.authorscopusid | 6508114835 | - |
dc.authorscopusid | 15063695700 | - |
dc.authorscopusid | 23968205700 | - |
dc.authorscopusid | 6504818614 | - |
dc.identifier.wos | WOS:000290385300001 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q3 | - |
dc.identifier.wosquality | N/A | - |
item.openairetype | Article | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
crisitem.author.dept | 05.04. Software Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
2
checked on Apr 2, 2025
WEB OF SCIENCETM
Citations
1
checked on Apr 2, 2025
Page view(s)
80
checked on Mar 31, 2025
Download(s)
20
checked on Mar 31, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.