Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2152
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEren, Levent-
dc.date.accessioned2023-06-16T14:31:35Z-
dc.date.available2023-06-16T14:31:35Z-
dc.date.issued2017-
dc.identifier.issn1024-123X-
dc.identifier.issn1563-5147-
dc.identifier.urihttps://doi.org/10.1155/2017/8617315-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2152-
dc.description.abstractBearing faults are the biggest single source of motor failures. Artificial Neural Networks (ANNs) and other decision support systems are widely used for early detection of bearing faults. The typical decision support systems require feature extraction and classification as two distinct phases. Extracting fixed features each time may require a significant computational cost preventing their use in real-time applications. Furthermore, the selected features for the classification phase may not represent the most optimal choice. In this paper, the use of 1D Convolutional Neural Networks (CNNs) is proposed for a fast and accurate bearing fault detection system. The feature extraction and classification phases of the bearing fault detection are combined into a single learning body with the implementation of 1D CNN. The raw vibration data (signal) is fed into the proposed system as input eliminating the need for running a separate feature extraction algorithm each time vibration data is analyzed for classification. Implementation of 1D CNNs results in more efficient systems in terms of computational complexity. The classification performance of the proposed system with real bearing data demonstrates that the reduced computational complexity is achieved without a compromise in fault detection accuracy.en_US
dc.language.isoenen_US
dc.publisherHindawi Ltden_US
dc.relation.ispartofMathematıcal Problems in Engıneerıngen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDamage Detectionen_US
dc.subjectDiagnosisen_US
dc.subjectDecompositionen_US
dc.subjectSensorlessen_US
dc.subjectMachineen_US
dc.titleBearing Fault Detection by One-Dimensional Convolutional Neural Networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1155/2017/8617315-
dc.identifier.scopus2-s2.0-85027323447en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridEren, Levent/0000-0002-5804-436X-
dc.authorwosidEren, Levent/T-2245-2019-
dc.authorscopusid6603027663-
dc.identifier.volume2017en_US
dc.identifier.wosWOS:000407252900001en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2152.pdf2.54 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

191
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

148
checked on Nov 20, 2024

Page view(s)

96
checked on Nov 18, 2024

Download(s)

26
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.