Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2330
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKilic, Gokhan-
dc.date.accessioned2023-06-16T14:38:50Z-
dc.date.available2023-06-16T14:38:50Z-
dc.date.issued2017-
dc.identifier.issn0090-3973-
dc.identifier.issn1945-7553-
dc.identifier.urihttps://doi.org/10.1520/JTE20150325-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2330-
dc.description.abstractGround-penetrating radar (GPR) uses electromagnetic waves to investigate the structures. In this investigation method, an electromagnetic wave is transmitted using an antenna and the received signal is recorded. Detection of beam positions in this GPR data requires the skills of a trained human operator. This study utilized a multi-layer neural network to detect beam positions in the GPR data. The visual description and definition of GPR data has major disadvantages and a neural network has been studied to overcome these shortcomings. A set of 32,740 training vectors with a length of 64 data was implemented to train the neural network. A new set of 16,370 testing vectors with a length of 64 data was then prepared to test the performance. Testing results suggest that the neural network is promising methods for the detection of beam positions in the GPR data.en_US
dc.language.isoenen_US
dc.publisherAmer Soc Testing Materialsen_US
dc.relation.ispartofJournal of Testıng And Evaluatıonen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectbackpropagation learning algorithmen_US
dc.subjectBayes optimal decision ruleen_US
dc.subjectGram-Charlier seriesen_US
dc.subjectGPR and data processingen_US
dc.subjectneural networken_US
dc.subjectNeural-Networksen_US
dc.subjectLearning Algorithmen_US
dc.subjectConcreteen_US
dc.subjectNdten_US
dc.titleApplications of Ground-Penetrating Radar (GPR) to Detect Hidden Beam Positionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1520/JTE20150325-
dc.identifier.scopus2-s2.0-85029037733en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridKILIC, GOKHAN/0000-0001-6928-226X-
dc.authorscopusid40761843000-
dc.identifier.volume45en_US
dc.identifier.issue3en_US
dc.identifier.startpage911en_US
dc.identifier.endpage921en_US
dc.identifier.wosWOS:000402059700018en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityQ3-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
crisitem.author.dept05.03. Civil Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 20, 2024

Page view(s)

74
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.