Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/2465
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ehrgott, Matthias | - |
dc.contributor.author | Waters, Chris | - |
dc.contributor.author | Kasimbeyli̇, Refail | - |
dc.contributor.author | Ustun, Ozden | - |
dc.date.accessioned | 2023-06-16T14:40:45Z | - |
dc.date.available | 2023-06-16T14:40:45Z | - |
dc.date.issued | 2009 | - |
dc.identifier.issn | 0315-5986 | - |
dc.identifier.uri | https://doi.org/10.3138/infor.47.1.31 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/2465 | - |
dc.description.abstract | In recent years portfolio optimization models that consider more criteria than the expected return and variance objectives of the Markowitz model have become popular. These models are harder to solve than the quadratic mean-variance problem. Two approaches to find a suitable portfolio for an investor are possible. In the multiattribute utility theory (MAUT) approach a utility function is constructed based on the investor's preferences and an optimization problem is solved to find a portfolio that maximizes the utility function. In the multiobjective programming (MOP) approach a set of efficient portfolios is computed by optimizing a scalarized objective function. The investor then chooses a portfolio from the efficient set according to his/her preferences. We outline these two approaches using the UTADIS method to construct a utility function and present numerical results for an example. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Infor | en_US |
dc.relation.ispartof | Infor | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Portfolio optimization | en_US |
dc.subject | multiobjective programming | en_US |
dc.subject | multiattribute utility function | en_US |
dc.subject | UTADIS | en_US |
dc.subject | Proper Efficiency | en_US |
dc.subject | Vector Maximization | en_US |
dc.subject | Selection | en_US |
dc.title | Multiobjective Programming and Multiattribute Utility Functions in Portfolio Optimization | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3138/infor.47.1.31 | - |
dc.identifier.scopus | 2-s2.0-73649145532 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Kasimbeyli OR Gasimov, Refail OR Rafail/0000-0002-7339-9409 | - |
dc.authorid | Ehrgott, Matthias/0000-0003-4648-4066 | - |
dc.authorwosid | Kasimbeyli OR Gasimov, Refail OR Rafail/AAA-4049-2020 | - |
dc.authorscopusid | 6603967796 | - |
dc.authorscopusid | 35323157500 | - |
dc.authorscopusid | 35146065000 | - |
dc.authorscopusid | 55911445000 | - |
dc.identifier.volume | 47 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 31 | en_US |
dc.identifier.endpage | 42 | en_US |
dc.identifier.wos | WOS:000273773300005 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q3 | - |
dc.identifier.wosquality | Q4 | - |
item.grantfulltext | embargo_20300101 | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.09. Industrial Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
2465.pdf Until 2030-01-01 | 352.39 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
23
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
20
checked on Nov 20, 2024
Page view(s)
56
checked on Nov 18, 2024
Download(s)
6
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.