Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2469
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKahraman, Funda-
dc.contributor.authorEsme, Ugur-
dc.contributor.authorKulekci, Mustafa Kemal-
dc.contributor.authorKazancoglu, Yigit-
dc.date.accessioned2023-06-16T14:40:45Z-
dc.date.available2023-06-16T14:40:45Z-
dc.date.issued2012-
dc.identifier.issn0025-5300-
dc.identifier.urihttps://doi.org/10.3139/120.110328-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2469-
dc.description.abstractThe present paper focuses on two techniques, namely regression and neural network, for predicting tool wear. Predicted values of tool wear by both techniques were compared with experimental values. Also, the effects of the main machining variables on tool wear have been determined. The metal volume removed (MVR) was taken as response (output) variable and cutting speed, feed rate, depth of cut and hardness were taken as input parameters, respectively. The relationship between tool wear and machining parameters was found out by direct measurement of the tool wear by MVR. The results showed the ability of regression and neural network models to predict the tool wear, accurately.en_US
dc.language.isoenen_US
dc.publisherCarl Hanser Verlagen_US
dc.relation.ispartofMaterıals Testıngen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTool Wearen_US
dc.subjectDesignen_US
dc.subjectLifeen_US
dc.titleRegression Based Neural Network Modeling for Forecasting of the Metal Volume Removal Rate in Turning Operationsen_US
dc.typeArticleen_US
dc.identifier.doi10.3139/120.110328-
dc.identifier.scopus2-s2.0-84859939655en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridKazancoglu, Yigit/0000-0001-9199-671X-
dc.authoridKazancoglu, Yigit/0000-0001-9199-671X-
dc.authoridKulekci, Mustafa Kemal/0000-0002-5829-3489-
dc.authorwosidKazancoglu, Yigit/E-7705-2015-
dc.authorwosidKazancoglu, Yigit/AAT-5676-2021-
dc.authorwosidKulekci, Mustafa Kemal/M-7600-2015-
dc.authorscopusid26655697300-
dc.authorscopusid26867583500-
dc.authorscopusid6602379625-
dc.authorscopusid15848066400-
dc.identifier.volume54en_US
dc.identifier.issue4en_US
dc.identifier.startpage266en_US
dc.identifier.endpage270en_US
dc.identifier.wosWOS:000302427600009en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.grantfulltextembargo_20300101-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept03.02. Business Administration-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2469.pdf
  Until 2030-01-01
399.62 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 20, 2024

Page view(s)

60
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.