Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2488
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCelik, Halil Ibrahim-
dc.contributor.authorDulger, Lale Canan-
dc.contributor.authorOztas, Burak-
dc.contributor.authorKertmen, Mehmet-
dc.contributor.authorGultekin, Elif-
dc.date.accessioned2023-06-16T14:40:49Z-
dc.date.available2023-06-16T14:40:49Z-
dc.date.issued2022-
dc.identifier.issn1300-3356-
dc.identifier.urihttps://doi.org/10.32710/tekstilvekonfeksiyon.1017016-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2488-
dc.description.abstractFabric Automatic Visual Inspection (FAVI) system provides reliable performance on fabric defects inspection. This study presents a machine vision system developed to adapt in circular knitting machines where fabric defects can be automatically controlled and detected defects can be classified. The knitted fabric surface are detected during real-time manufacturing. For the classification process, three different transfer learning architectures (ResNet-50, AlexNet, GoogLeNet) have been applied. The five common knitted fabric defects were recognized with the artificial intelligence-based software and classified with an average success rate of 98% using ResNet-50 architecture. The success rates of the trained networks were compared.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [5180057]en_US
dc.description.sponsorshipThis study is supported by the Scientific and Technological Research Council of Turkey (TUBITAK). Project Number: 5180057. We express our sincere thanks for their financial support.en_US
dc.language.isoenen_US
dc.publisherE.U. Printing And Publishing Houseen_US
dc.relation.ispartofTekstıl Ve Konfeksıyonen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCircular knitting machineen_US
dc.subjectKnitted fabricen_US
dc.subjectDefect detectionen_US
dc.subjectDeep learningen_US
dc.subjectConvolutional neural network (CNNs)en_US
dc.subjectSystemen_US
dc.titleA Novel Industrial Application of CNN Approach: Real Time Fabric Inspection and Defect Classification on Circular Knitting Machineen_US
dc.typeArticleen_US
dc.identifier.doi10.32710/tekstilvekonfeksiyon.1017016-
dc.identifier.scopus2-s2.0-85166267441en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.identifier.volume32en_US
dc.identifier.issue4en_US
dc.identifier.startpage344en_US
dc.identifier.endpage352en_US
dc.identifier.wosWOS:000910581200010en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ4-
dc.identifier.wosqualityQ4-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.10. Mechanical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2488.pdf1.05 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 20, 2024

Page view(s)

76
checked on Nov 18, 2024

Download(s)

230
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.