Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/2488
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Celik, Halil Ibrahim | - |
dc.contributor.author | Dulger, Lale Canan | - |
dc.contributor.author | Oztas, Burak | - |
dc.contributor.author | Kertmen, Mehmet | - |
dc.contributor.author | Gultekin, Elif | - |
dc.date.accessioned | 2023-06-16T14:40:49Z | - |
dc.date.available | 2023-06-16T14:40:49Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 1300-3356 | - |
dc.identifier.uri | https://doi.org/10.32710/tekstilvekonfeksiyon.1017016 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/2488 | - |
dc.description.abstract | Fabric Automatic Visual Inspection (FAVI) system provides reliable performance on fabric defects inspection. This study presents a machine vision system developed to adapt in circular knitting machines where fabric defects can be automatically controlled and detected defects can be classified. The knitted fabric surface are detected during real-time manufacturing. For the classification process, three different transfer learning architectures (ResNet-50, AlexNet, GoogLeNet) have been applied. The five common knitted fabric defects were recognized with the artificial intelligence-based software and classified with an average success rate of 98% using ResNet-50 architecture. The success rates of the trained networks were compared. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBITAK) [5180057] | en_US |
dc.description.sponsorship | This study is supported by the Scientific and Technological Research Council of Turkey (TUBITAK). Project Number: 5180057. We express our sincere thanks for their financial support. | en_US |
dc.language.iso | en | en_US |
dc.publisher | E.U. Printing And Publishing House | en_US |
dc.relation.ispartof | Tekstıl Ve Konfeksıyon | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Circular knitting machine | en_US |
dc.subject | Knitted fabric | en_US |
dc.subject | Defect detection | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Convolutional neural network (CNNs) | en_US |
dc.subject | System | en_US |
dc.title | A Novel Industrial Application of CNN Approach: Real Time Fabric Inspection and Defect Classification on Circular Knitting Machine | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.32710/tekstilvekonfeksiyon.1017016 | - |
dc.identifier.scopus | 2-s2.0-85166267441 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.identifier.volume | 32 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 344 | en_US |
dc.identifier.endpage | 352 | en_US |
dc.identifier.wos | WOS:000910581200010 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q4 | - |
dc.identifier.wosquality | Q4 | - |
item.grantfulltext | open | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.10. Mechanical Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
2
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
2
checked on Nov 20, 2024
Page view(s)
76
checked on Nov 18, 2024
Download(s)
230
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.