Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2599
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUcar, Aysegsul-
dc.contributor.authorDemir, Yakup-
dc.contributor.authorGuzelis, Cuneyt-
dc.date.accessioned2023-06-16T14:41:19Z-
dc.date.available2023-06-16T14:41:19Z-
dc.date.issued2014-
dc.identifier.issn1300-0632-
dc.identifier.issn1303-6203-
dc.identifier.urihttps://doi.org/10.3906/elk-1301-190-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2599-
dc.description.abstractThis paper considers robust classification as a constrained optimization problem. Where the constraints are nonlinear, inequalities defining separating surfaces, whose half spaces include or exclude the data depending on their classes and the cost, are used for attaining robustness and providing the minimum volume regions specified by the half spaces of the surfaces. The constraints are added to the cost using penalty functions to get an unconstrained problem for which the gradient descent method can be used. The separating surfaces, which are aimed to be found in this way, are optimal in the input data space in contrast to the conventional support vector machine (SVM) classifiers designed by the Lagrange multiplier method, which are optimal in the (transformed) feature space. Two types of surfaces, namely hyperellipsoidal and Gaussian-based surfaces created by radial basis functions (RBFs), are focused on in this paper due to their generality. Ellipsoidal classifiers are trained in 2 stages: a spherical surface is found in the first stage, and then the centers and the radii found in the first stage are taken as the initial input for the second stage to find the center and covariance matrix parameters of the ellipsoids. The penalty function approach to the design of robust classifiers enables the handling of multiclass classification. Compared to SVMs, multiple-kernel SVMs, and RBF classifiers, the proposed classifiers are found to be more efficient in terms of the required training time, parameter setting time, testing time, memory usage, and generalization error, especially for medium to large datasets. RBF-based input space optimal classifiers are also introduced for problems that are far from ellipsoidal, e.g., 2 Spirals.en_US
dc.language.isoenen_US
dc.publisherScientific Technical Research Council Turkey-Tubitaken_US
dc.relation.ispartofTurkish Journal of Electrical Engineering And Computer Sciencesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectClassificationen_US
dc.subjectgradient methodsen_US
dc.subjectpenalty approachen_US
dc.subjectspherical/elliptical separationen_US
dc.subjectsupport vector machinesen_US
dc.subjectSupporten_US
dc.subjectRegularizationen_US
dc.titleA Penalty Function Method for Designing Efficient Robust Classifiers With Input Space Optimal Separating Surfacesen_US
dc.typeArticleen_US
dc.identifier.doi10.3906/elk-1301-190-
dc.identifier.scopus2-s2.0-84910619514-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridUcar, aysegul/0000-0002-5253-3779-
dc.authorwosidDEMİR, YAKUP/V-9039-2018-
dc.authorwosidUcar, aysegul/P-8443-2015-
dc.authorscopusid7004549716-
dc.authorscopusid7006472523-
dc.authorscopusid55937768800-
dc.identifier.volume22en_US
dc.identifier.issue6en_US
dc.identifier.startpage1664en_US
dc.identifier.endpage1685en_US
dc.identifier.wosWOS:000344740600020-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ3-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2599.pdf3.36 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.