Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2743
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorİnce, Türker-
dc.contributor.authorAbdeljaber, Osama-
dc.contributor.authorAvcı, Onur-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T14:48:26Z-
dc.date.available2023-06-16T14:48:26Z-
dc.date.issued2019-
dc.identifier.isbn978-1-4799-8131-1-
dc.identifier.issn1520-6149-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2743-
dc.description44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) -- MAY 12-17, 2019 -- Brighton, ENGLANDen_US
dc.description.abstract1D Convolutional Neural Networks (CNNs) have recently become the state-of-the-art technique for crucial signal processing applications such as patient-specific ECG classification, structural health monitoring, anomaly detection in power electronics circuitry and motor-fault detection. This is an expected outcome as there are numerous advantages of using an adaptive and compact 1D CNN instead of a conventional (2D) deep counterparts. First of all, compact 1D CNNs can be efficiently trained with a limited dataset of 1D signals while the 2D deep CNNs, besides requiring 1D to 2D data transformation, usually need datasets with massive size, e.g., in the Big Data scale in order to prevent the well-known overfitting problem. 1D CNNs can directly be applied to the raw signal (e.g., current, voltage, vibration, etc.) without requiring any pre-or postprocessing such as feature extraction, selection, dimension reduction, denoising, etc. Furthermore, due to the simple and compact configuration of such adaptive 1D CNNs that perform only linear 1D convolutions (scalar multiplications and additions), a real-time and low-cost hardware implementation is feasible. This paper reviews the major signal processing applications of compact 1D CNNs with a brief theoretical background. We will present their state-of-the-art performances and conclude with focusing on some major properties.en_US
dc.description.sponsorshipInst Elect & Elect Engineers,Inst Elect & Elect Engineers Signal Proc Socen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2019 Ieee Internatıonal Conference on Acoustıcs, Speech And Sıgnal Processıng (Icassp)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject1-D CNNsen_US
dc.subjectBiomedical Signal Processingen_US
dc.subjectSHMen_US
dc.subjectBearing Damage Detectionen_US
dc.subjectFault-Diagnosisen_US
dc.subjectDeepen_US
dc.subjectDecompositionen_US
dc.title1-D Convolutional Neural Networks for Signal Processing Applicationsen_US
dc.typeConference Objecten_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridAbdeljaber, Osama/0000-0003-0530-9552-
dc.authoridGabbouj, Moncef/0000-0002-9788-2323-
dc.authorwosidKiranyaz, Serkan/AAK-1416-2021-
dc.authorwosidAbdeljaber, Osama/AAO-2663-2020-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.identifier.startpage8360en_US
dc.identifier.endpage8364en_US
dc.identifier.wosWOS:000482554008120en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextembargo_20300101-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2743.pdf
  Until 2030-01-01
796.91 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

155
checked on Nov 20, 2024

Page view(s)

364
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.