Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2769
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBinici, Rifki Can-
dc.contributor.authorSahin, Umut-
dc.contributor.authorAyanzadeh, Aydin-
dc.contributor.authorToreyin, Behcet Ugur-
dc.contributor.authorOnal, Sevgi-
dc.contributor.authorOkvur, Devrim Pesen-
dc.contributor.authorOzuysal, Ozden Yalcin-
dc.date.accessioned2023-06-16T14:48:29Z-
dc.date.available2023-06-16T14:48:29Z-
dc.date.issued2019-
dc.identifier.isbn978-1-7281-2420-9-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2769-
dc.descriptionMedical Technologies Congress (TIPTEKNO) -- OCT 03-05, 2019 -- Izmir, TURKEYen_US
dc.description.abstractPhase contrast optical microscopy is a preferred imaging technique for live-cell, temporal analysis. Segmentation of cells from time series data acquired with this technique is a labor-intensive and time-consuming task that cell biology researchers need solution for. In this study traditional image processing and deep learning based approaches for automated cell segmentation from phase contrast optical microscopy time series are presented, and their performances are evaluated against manually annotated datasets.en_US
dc.description.sponsorshipBiyomedikal Klinik Muhendisligi Dernegi,Izmir Katip Celebi Univ, Biyomedikal Muhendisligi Bolumuen_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof2019 Medıcal Technologıes Congress (Tıptekno)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectphase contrast optical microscopyen_US
dc.subjecttime seriesen_US
dc.subjectcell segmentationen_US
dc.subjectdeep learningen_US
dc.subjectSegNeten_US
dc.subjectTrackingen_US
dc.titleAutomated Segmentation of Cells in Phase Contrast Optical Microscopy Time Series Imagesen_US
dc.title.alternativeFaz kontrast optik mikroskopi zaman serisi görüntülerinde hücrelerin otomatik bölütlenmesien_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO.2019.8895080-
dc.identifier.scopus2-s2.0-85075606705en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridAyanzadeh, Aydin/0000-0002-8816-3204-
dc.authoridUnay, Devrim/0000-0003-3478-7318-
dc.authoridToreyin, Behcet Ugur/0000-0003-4406-2783-
dc.authoridOnal, Sevgi/0000-0002-9882-132X-
dc.authorwosidOnal, Sevgi/AAO-8438-2021-
dc.authorwosidAyanzadeh, Aydin/O-8380-2019-
dc.authorwosidToreyin, Behcet Ugur/ABI-6849-2020-
dc.authorwosidUnay, Devrim/AAE-6908-2020-
dc.identifier.startpage200en_US
dc.identifier.endpage203en_US
dc.identifier.wosWOS:000516830900052en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextembargo_20300101-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2769.pdf
  Until 2030-01-01
898.14 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

6
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 20, 2024

Page view(s)

76
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.