Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2813
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDevecioglu, Ozer Can-
dc.contributor.authorYaman, Burak-
dc.contributor.authorMesekoparan, Ozle-
dc.contributor.authorCakir, Can-
dc.contributor.authorİnce, Türker-
dc.date.accessioned2023-06-16T14:48:36Z-
dc.date.available2023-06-16T14:48:36Z-
dc.date.issued2019-
dc.identifier.isbn978-1-5386-7687-5-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2813-
dc.descriptionInternational Aegean Conference on Electrical Machines and Power Electronics (ACEMP) / International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) -- AUG 27-29, 2019 -- Bahcesehir Univ, Istanbul, TURKEYen_US
dc.description.abstractThis paper presents development of a robotic arm that can mimic the mobility of human arm with the recorded EEG (electroencephalogram) signals from the brain. This is a project designed for people who have lost the ability to control their arms. The robot arm will work with the signals that will be produced by the EEG instrument simultaneously when the user thinks that he or she will perform certain movements. These movements can be classified using Deep Multilayer Perceptron (Deep MLP) classifier designed in Python with Keras library. Deep MLP network is trained using Backpropagation algorithm for each patient by using own data. Experimental results demonstrate the proposed method can classify different imaginary movements with high accuracy.en_US
dc.description.sponsorshipMiddle E Tech Univ,Atilim Univ,Transilvania Univ Brasov,Univ Politehnica Timisoara,Tech Univ Cluj Napoca,Inst Elect & Elect Engineers,IEEE Ind Elect Soc,IEEE PES,IEEE IASen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2019 Internatıonal Aegean Conference on Electrıcal Machınes And Power Electronıcs (Acemp) & 2019 Internatıonal Conference on Optımızatıon of Electrıcal And Electronıc Equıpment (Optım)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep Multilayer Perceptronen_US
dc.subjectBiomedical Signal Processingen_US
dc.subjectEEG Signalsen_US
dc.subjectImaginary Motor Movementen_US
dc.titlePatient-Specific Imaginary Motor Movement Classification of EEG Signals and Control of Robotic Armen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ACEMP-OPTIM44294.2019.9007180-
dc.identifier.scopus2-s2.0-85081539739en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridDevecioglu, Ozer Can/0000-0002-9810-622X-
dc.identifier.startpage553en_US
dc.identifier.endpage556en_US
dc.identifier.wosWOS:000535884900083en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2813.pdf
  Restricted Access
602.65 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 20, 2024

Page view(s)

98
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.