Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/2813
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Devecioglu, Ozer Can | - |
dc.contributor.author | Yaman, Burak | - |
dc.contributor.author | Mesekoparan, Ozle | - |
dc.contributor.author | Cakir, Can | - |
dc.contributor.author | İnce, Türker | - |
dc.date.accessioned | 2023-06-16T14:48:36Z | - |
dc.date.available | 2023-06-16T14:48:36Z | - |
dc.date.issued | 2019 | - |
dc.identifier.isbn | 978-1-5386-7687-5 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/2813 | - |
dc.description | International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) / International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) -- AUG 27-29, 2019 -- Bahcesehir Univ, Istanbul, TURKEY | en_US |
dc.description.abstract | This paper presents development of a robotic arm that can mimic the mobility of human arm with the recorded EEG (electroencephalogram) signals from the brain. This is a project designed for people who have lost the ability to control their arms. The robot arm will work with the signals that will be produced by the EEG instrument simultaneously when the user thinks that he or she will perform certain movements. These movements can be classified using Deep Multilayer Perceptron (Deep MLP) classifier designed in Python with Keras library. Deep MLP network is trained using Backpropagation algorithm for each patient by using own data. Experimental results demonstrate the proposed method can classify different imaginary movements with high accuracy. | en_US |
dc.description.sponsorship | Middle E Tech Univ,Atilim Univ,Transilvania Univ Brasov,Univ Politehnica Timisoara,Tech Univ Cluj Napoca,Inst Elect & Elect Engineers,IEEE Ind Elect Soc,IEEE PES,IEEE IAS | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2019 Internatıonal Aegean Conference on Electrıcal Machınes And Power Electronıcs (Acemp) & 2019 Internatıonal Conference on Optımızatıon of Electrıcal And Electronıc Equıpment (Optım) | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Deep Multilayer Perceptron | en_US |
dc.subject | Biomedical Signal Processing | en_US |
dc.subject | EEG Signals | en_US |
dc.subject | Imaginary Motor Movement | en_US |
dc.title | Patient-Specific Imaginary Motor Movement Classification of EEG Signals and Control of Robotic Arm | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/ACEMP-OPTIM44294.2019.9007180 | - |
dc.identifier.scopus | 2-s2.0-85081539739 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Devecioglu, Ozer Can/0000-0002-9810-622X | - |
dc.identifier.startpage | 553 | en_US |
dc.identifier.endpage | 556 | en_US |
dc.identifier.wos | WOS:000535884900083 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.grantfulltext | reserved | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
2813.pdf Restricted Access | 602.65 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
2
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
1
checked on Nov 20, 2024
Page view(s)
98
checked on Nov 18, 2024
Download(s)
6
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.