Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/2837
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Eren, Levent | - |
dc.contributor.author | Cekic, Yalcin | - |
dc.contributor.author | Devaney, Michael J. | - |
dc.date.accessioned | 2023-06-16T14:50:31Z | - |
dc.date.available | 2023-06-16T14:50:31Z | - |
dc.date.issued | 2018 | - |
dc.identifier.isbn | 978-90-827970-1-5 | - |
dc.identifier.issn | 2076-1465 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/2837 | - |
dc.description | European Signal Processing Conference (EUSIPCO) -- SEP 03-07, 2018 -- Rome, ITALY | en_US |
dc.description.abstract | Bearing faults are by far the biggest single source of motor failures. Both fast Fourier (frequency based) and wavelet (time-scale based) transforms are used commonly in analyzing raw vibration or current data to detect bearing faults. A hybrid method, Empirical Wavelet Transform (EWT), is used in this study to provide better accuracy in detecting faults from bearing vibration data. In the proposed method, the raw vibration data is processed by fast Fourier transform. Then, the Fourier spectrum of the vibration signal is divided into segments adaptively with each segment containing part of the frequency band. Next, the wavelet transform is applied to all segments. Finally, inverse Fourier transform is utilized to obtain time domain signal with the frequency band of interest from EWT coefficients to detect bearing faults. The bearing fault related segments are identified by comparing rms values of healthy bearing vibration signal segments with the same segments of faulty bearing. The main advantage of the proposed method is the possibility of extracting the segments of interest from the original vibration data for determining both fault type and severity. | en_US |
dc.description.sponsorship | European Assoc Signal Processing,IEEE Signal Processing Soc,ROMA TRE Univ Degli Studi,MathWorks,Amazon Devices | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE Computer Soc | en_US |
dc.relation.ispartof | 2018 26Th European Sıgnal Processıng Conference (Eusıpco) | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | empirical wavelet transform | en_US |
dc.subject | Fourier transform | en_US |
dc.subject | induction motors | en_US |
dc.subject | bearing faults component | en_US |
dc.subject | Bearing Damage Detection | en_US |
dc.subject | Fault-Diagnosis | en_US |
dc.subject | Decomposition | en_US |
dc.title | Motor Condition Monitoring by Empirical Wavelet Transform | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.23919/EUSIPCO.2018.8553566 | - |
dc.identifier.scopus | 2-s2.0-85059799551 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Eren, Levent/0000-0002-5804-436X | - |
dc.authorid | Cekic, Yalcin/0000-0002-8920-3212 | - |
dc.authorwosid | Eren, Levent/T-2245-2019 | - |
dc.authorwosid | Cekic, Yalcin/AAH-2522-2019 | - |
dc.identifier.startpage | 196 | en_US |
dc.identifier.endpage | 200 | en_US |
dc.identifier.wos | WOS:000455614900040 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.grantfulltext | reserved | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
2017.pdf Restricted Access | 1.03 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
4
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
3
checked on Nov 20, 2024
Page view(s)
58
checked on Nov 18, 2024
Download(s)
6
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.