Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2837
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEren, Levent-
dc.contributor.authorCekic, Yalcin-
dc.contributor.authorDevaney, Michael J.-
dc.date.accessioned2023-06-16T14:50:31Z-
dc.date.available2023-06-16T14:50:31Z-
dc.date.issued2018-
dc.identifier.isbn978-90-827970-1-5-
dc.identifier.issn2076-1465-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2837-
dc.descriptionEuropean Signal Processing Conference (EUSIPCO) -- SEP 03-07, 2018 -- Rome, ITALYen_US
dc.description.abstractBearing faults are by far the biggest single source of motor failures. Both fast Fourier (frequency based) and wavelet (time-scale based) transforms are used commonly in analyzing raw vibration or current data to detect bearing faults. A hybrid method, Empirical Wavelet Transform (EWT), is used in this study to provide better accuracy in detecting faults from bearing vibration data. In the proposed method, the raw vibration data is processed by fast Fourier transform. Then, the Fourier spectrum of the vibration signal is divided into segments adaptively with each segment containing part of the frequency band. Next, the wavelet transform is applied to all segments. Finally, inverse Fourier transform is utilized to obtain time domain signal with the frequency band of interest from EWT coefficients to detect bearing faults. The bearing fault related segments are identified by comparing rms values of healthy bearing vibration signal segments with the same segments of faulty bearing. The main advantage of the proposed method is the possibility of extracting the segments of interest from the original vibration data for determining both fault type and severity.en_US
dc.description.sponsorshipEuropean Assoc Signal Processing,IEEE Signal Processing Soc,ROMA TRE Univ Degli Studi,MathWorks,Amazon Devicesen_US
dc.language.isoenen_US
dc.publisherIEEE Computer Socen_US
dc.relation.ispartof2018 26Th European Sıgnal Processıng Conference (Eusıpco)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectempirical wavelet transformen_US
dc.subjectFourier transformen_US
dc.subjectinduction motorsen_US
dc.subjectbearing faults componenten_US
dc.subjectBearing Damage Detectionen_US
dc.subjectFault-Diagnosisen_US
dc.subjectDecompositionen_US
dc.titleMotor Condition Monitoring by Empirical Wavelet Transformen_US
dc.typeConference Objecten_US
dc.identifier.doi10.23919/EUSIPCO.2018.8553566-
dc.identifier.scopus2-s2.0-85059799551en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridEren, Levent/0000-0002-5804-436X-
dc.authoridCekic, Yalcin/0000-0002-8920-3212-
dc.authorwosidEren, Levent/T-2245-2019-
dc.authorwosidCekic, Yalcin/AAH-2522-2019-
dc.identifier.startpage196en_US
dc.identifier.endpage200en_US
dc.identifier.wosWOS:000455614900040en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2017.pdf
  Restricted Access
1.03 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

3
checked on Nov 20, 2024

Page view(s)

58
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.