Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2842
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAhishali, Mete-
dc.contributor.authorİnce, Türker-
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T14:50:32Z-
dc.date.available2023-06-16T14:50:32Z-
dc.date.issued2019-
dc.identifier.isbn978-1-7281-3403-1-
dc.identifier.issn1559-9450-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2842-
dc.descriptionPhotonIcs and Electromagnetics Research Symposium - Spring (PIERS-Spring) -- JUN 17-20, 2019 -- Rome, ITALYen_US
dc.description.abstractIn this work, we propose to use learned features for terrain classification of Polarimetric Synthetic Aperture Radar (PolSAR) images. In the proposed classification framework, the learned features are extracted from sliding window regions using Convolutional Neural Networks (CNNs), and then they are used for the classification with the linear Support Vector Machine (SVM) classifier. The classification performance of the proposed approach is compared with numerous target decomposition theorems (TDs) as the engineered features tested with two classifiers: Collective Network of Binary Classifiers (CNBCs) and SVMs. The experimental evaluations over two commonly used benchmark AIRSAR PolSAR images, San Francisco Bay and Flevoland at L-Band, reveal that the classification performance of the learned features with CNNs outperforms the performance of the engineered features as TDs even the dimension of learned features is the quarter of the engineered features.en_US
dc.description.sponsorshipInst Elect & Elect Engineers,Assoc Res Advancement Photon & Elect Engn,Electromagnet Acad,Sapienza Univ Rome, Fac Civil & Ind Engn,IEEE Geoscience & Remote Sensing Soc,IEEE Antennas & Propagat Soc,IEEE Photon Soc, Italy Chapter,Italian Soc Elect,Italian Soci Electromagnet,Italian Soc Opt & Photon,Ist Italiano Tecnologia,Gallium Arsenide Applicat Symposium,Sapienza Univ Rome, Fac Informat Engn, Comp Sci & Staten_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2019 Photonıcs & Electromagnetıcs Research Symposıum - Sprıng (Pıers-Sprıng)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDecompositionen_US
dc.subjectEntropyen_US
dc.subjectNetworken_US
dc.titlePerformance Comparison of Learned vs. Engineered Features for Polarimetric SAR Terrain Classificationen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/PIERS-Spring46901.2019.9017716-
dc.identifier.scopus2-s2.0-85082018376en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridGabbouj, Moncef/0000-0002-9788-2323-
dc.authoridAhishali, Mete/0000-0003-0937-5194-
dc.authoridkiranyaz, serkan/0000-0003-1551-3397-
dc.authorwosidKiranyaz, Serkan/AAK-1416-2021-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.identifier.startpage2317en_US
dc.identifier.endpage2324en_US
dc.identifier.wosWOS:000550769302054en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2021.pdf
  Restricted Access
222.2 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 20, 2024

Page view(s)

242
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.