Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2844
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUhlmann, Stefan-
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorGabbouj, Moncef-
dc.contributor.authorİnce, Türker-
dc.date.accessioned2023-06-16T14:50:32Z-
dc.date.available2023-06-16T14:50:32Z-
dc.date.issued2011-
dc.identifier.isbn978-1-4577-1303-3-
dc.identifier.issn1522-4880-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2844-
dc.description18th IEEE International Conference on Image Processing (ICIP) -- SEP 11-14, 2011 -- Brussels, BELGIUMen_US
dc.description.abstractIn this paper, we propose a dedicated application of collective network of binary classifiers (CNBC) to address the problem of incremental learning, which occurs by introducing new SAR terrain classes. Furthermore, another major goal is to achieve a high classification performance over multiple SAR images even though the training data may not be entirely accurate. The CNBC in principle adopts a Divide and Conquer type approach by allocating an individual network of binary classifiers (NBCs) to discriminate each SAR terrain class among others and performing evolutionary search to find the optimal binary classifier (BC) in each NBC. Such design further allows dynamic SAR class and feature scalability in such a way that the CNBC can gradually adapt its internal topology to new features and classes with minimal effort. Experiments visually demonstrate the classification accuracy and efficiency of the proposed system over eight fully polarimetric NASA/JPL AIRSAR data sets.en_US
dc.description.sponsorshipIEEE,IEEE Signal Proc Soc (SPS)en_US
dc.description.sponsorshipAcademy of Finland [213462]; NASA/JPLen_US
dc.description.sponsorshipThis work was supported by the Academy of Finland, project No. 213462 (Finnish Centre of Excellence Program, 2006-2011). The authors would also like to thank the NASA/JPL for making the used datasets available.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2011 18Th Ieee Internatıonal Conference on Image Processıng (Icıp)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectclassificationen_US
dc.subjectincrementalen_US
dc.subjectevolutionen_US
dc.subjectSARen_US
dc.subjectLearning Algorithmen_US
dc.subjectNeural-Networksen_US
dc.titleIncremental evolution of collective network of binary classifier for polarimetric SAR image classificationen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ICIP.2011.6115806-
dc.identifier.scopus2-s2.0-84856304685en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridGabbouj, Moncef/0000-0002-9788-2323-
dc.authoridİnce, Türker/0000-0002-8495-8958-
dc.authoridkiranyaz, serkan/0000-0003-1551-3397-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.authorwosidKiranyaz, Serkan/AAK-1416-2021-
dc.identifier.startpage177en_US
dc.identifier.endpage180en_US
dc.identifier.wosWOS:000298962500045en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2022.pdf
  Restricted Access
833.52 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 20, 2024

Page view(s)

238
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.