Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2847
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİnce, Türker-
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T14:50:32Z-
dc.date.available2023-06-16T14:50:32Z-
dc.date.issued2013-
dc.identifier.isbn978-1-934142-26-4-
dc.identifier.issn1559-9450-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2847-
dc.descriptionProgress In Electromagnetics Research Symposium -- AUG 12-15, 2013 -- Stockholm, SWEDENen_US
dc.description.abstractIn this study, a new systematic approach for semi-automatic classification of polarimetric synthetic aperture radar (PoISAR) image is proposed. The feature extraction block utilizes traditionally used SAR features including the complete coherency (or covariance) matrix information, features derived from various target decomposition theorems, the backscattering power and the selected texture features from gray-level cooccurrence matrix (GLCM). Classification of the information in multi-dimensional PoISAR data space by dynamic clustering is addressed as an optimization problem and recently proposed multi-dimensional particle swarm optimization (MD PSO) technique is applied to find optimal clusters in a given input data space, distance metric and a proper validity index function. An experimental study is performed using the fully polarimetric San Francisco Bay AIRSAR dataset to analyze and compare the results of classification with the state of the art techniques.en_US
dc.description.sponsorshipRoyal Inst Technol,Sino Swedish Joint Res Ctr Photon,Asian Off Aerosp Res & Dev,Swedish Inst,Swedish Res Council,Zhejiang Univ, Electromagnet Acad,Electromagnet Acaden_US
dc.language.isoenen_US
dc.publisherElectromagnetics Acaden_US
dc.relation.ispartofPıers 2013 Stockholm: Progress in Electromagnetıcs Research Symposıumen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectUnsupervised Classificationen_US
dc.subjectDecompositionen_US
dc.titleSemi-automatic Polarimetric SAR Image Classification by MD PSO Based Dynamic Clusteringen_US
dc.typeConference Objecten_US
dc.identifier.scopus2-s2.0-84884742009en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridGabbouj, Moncef/0000-0002-9788-2323-
dc.authoridkiranyaz, serkan/0000-0003-1551-3397-
dc.authoridİnce, Türker/0000-0002-8495-8958-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.authorwosidKiranyaz, Serkan/AAK-1416-2021-
dc.identifier.startpage279en_US
dc.identifier.endpage284en_US
dc.identifier.wosWOS:000361384200057en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2023.pdf
  Restricted Access
465.06 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

230
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.