Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2882
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİnce, Türker-
dc.date.accessioned2023-06-16T14:50:36Z-
dc.date.available2023-06-16T14:50:36Z-
dc.date.issued2010-
dc.identifier.isbn978-1-934142-14-1-
dc.identifier.issn1559-9450-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2882-
dc.descriptionProgress in Electromagnetics Research Symposium -- JUL 05-08, 2010 -- Cambridge, MAen_US
dc.description.abstractThis paper presents a robust radial basis function (RBF) network based classifier for polarimetric synthetic aperture radar (SAR) images. The proposed feature extraction process utilizes the covariance matrix, the gray level co-occurrence matrix (GLCM) based texture features, and the backscattering power (Span) combined with the H/alpha/A decomposition, which are projected onto a lower dimensional feature space using principal component analysis. For the classifier training two popular techniques are explored: conventional backpropagation (BP) and particle swarm optimization (PSO). By using both polarimetric covariance matrix and decomposition based pixel values and textural information (contrast, correlation, energy, and homogeneity) in the feature set, classification accuracy is improved. An experimental study is performed using the fully polarimetric San Francisco Bay and Flevoland data sets acquired by the NASA/Jet Propulsion Laboratory Airborne SAR, (AIRSAR.) at L-band to evaluate the performance of the proposed classifier. Classification results (in terms of confusion matrix, overall accuracy and classification map) compared with competing state of the art algorithms demonstrate the effectiveness of the proposed RBF network classifier.en_US
dc.description.sponsorshipSchlumberger-Doll Res,MIT Ctr Electromagnet Theory & Applicat/Res Lab Elect,Zhejiang Univ, Electromagnet Acaden_US
dc.language.isoenen_US
dc.publisherElectromagnetics Acaden_US
dc.relation.ispartofPıers 2010 Cambrıdge: Progress in Electromagnetıcs Research Symposıum Proceedıngs, Vols 1 And 2en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectUnsupervised Classificationen_US
dc.titlePolarimetric SAR Image Classification Using Radial Basis Function Neural Networken_US
dc.typeConference Objecten_US
dc.identifier.scopus2-s2.0-79952692826en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridİnce, Türker/0000-0002-8495-8958-
dc.identifier.startpage60en_US
dc.identifier.endpage65en_US
dc.identifier.wosWOS:000305490800011en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2059.pdf
  Restricted Access
171.8 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 20, 2024

Page view(s)

62
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.