Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2885
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIzci, Elif-
dc.contributor.authorDegirmenci, Murside-
dc.contributor.authorOzdemir, Mehmet Akif-
dc.contributor.authorAkan, Aydin-
dc.date.accessioned2023-06-16T14:50:37Z-
dc.date.available2023-06-16T14:50:37Z-
dc.date.issued2020-
dc.identifier.isbn978-1-7281-7206-4-
dc.identifier.issn2165-0608-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2885-
dc.description28th Signal Processing and Communications Applications Conference (SIU) -- OCT 05-07, 2020 -- ELECTR NETWORKen_US
dc.description.abstractArrhythmia is any irregularity of heart rate that cause an abnormality in your heart rhythm. Manual analysis of Electrocardiogram (ECG) signal is not enough for quickly identify abnormalities in the heart rhythm. This paper proposes a deep learning approach for detection of five different arrhythmia types based on 2D convolutional neural networks (CNN) architecture. ECG signals were obtained from MIT-BIll arrhythmia database. For CNN architecture, each ECG signal was segmented into heartbeats, then each heartbeat was transformed into 2D grayscale heartbeat image. 2D CNN model was used due to success of image recognition. The proposed model result demonstrate that CNN and ECG image formation give highest result when classified different types of ECG arrhythmic signals.en_US
dc.description.sponsorshipIstanbul Medipol Univen_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof2020 28Th Sıgnal Processıng And Communıcatıons Applıcatıons Conference (Sıu)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArrhythmiaen_US
dc.subjectDeep Learningen_US
dc.subjectECG Imagesen_US
dc.subjectClassificationen_US
dc.titleECG Arrhythmia Detection with Deep Learningen_US
dc.typeConference Objecten_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridİzci, Elif/0000-0003-1148-8374-
dc.authoridOzdemir, Mehmet Akif/0000-0002-8758-113X-
dc.authorwosidİzci, Elif/GOE-6084-2022-
dc.authorwosidOzdemir, Mehmet Akif/G-7952-2018-
dc.identifier.wosWOS:000653136100193en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2062.pdf
  Restricted Access
439.62 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

7
checked on Nov 20, 2024

Page view(s)

84
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.