Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2915
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİnce, Türker-
dc.contributor.authorAhishali, Mete-
dc.contributor.authorKiranyaz, Serkan-
dc.date.accessioned2023-06-16T14:52:09Z-
dc.date.available2023-06-16T14:52:09Z-
dc.date.issued2017-
dc.identifier.isbn978-1-5090-6269-0-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2915-
dc.descriptionProgress in Electromagnetics Research Symposium - Spring (PIERS) -- MAY 22-25, 2017 -- St Petersburg, RUSSIAen_US
dc.description.abstractIn this study, the most commonly used polarimetric SAR features including the complete coherency (or covariance) matrix information, features obtained from several coherent and incoherent target decompositions, the backscattering power and the visual texture features are compared in terms of their classification performance of different terrain classes. For pattern recognition, two powerful machine learning techniques, Collective Network of Binary Classifier (CNBC) with incremental training capability and Support Vector Machines (SVM) are employed. Each feature has its own strength and weaknesses for discriminating different SAR class types and this study aims to investigate them through incremental feature based training of both classifiers and compare the results of the experiments performed using the fully polarimetric San Francisco Bay and Flevoland datasets.en_US
dc.description.sponsorshipElectromagnet Acad,St Petersburg State Univ,Tomsk Polytechn Univ,Univ Gavle,Swedish Inst,Inst Elec & Elect Engineers,IEEE Geoscience & Remote Sensing Soc,Zhejiang Univ, Coll Informat Sci & Elect Engn,Sino Swedish Joint Res Ctr Photon,Zhejiang Univ, Electromagnet Acaden_US
dc.description.sponsorshipScientific and Technical Research Council of Turkey (TUBITAK) [114E135]en_US
dc.description.sponsorshipThis work was supported by the Scientific and Technical Research Council of Turkey (TUBITAK) under Project 114E135.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2017 Progress in Electromagnetıcs Research Symposıum - Sprıng (Pıers)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectUnsupervised Classificationen_US
dc.subjectDecompositionen_US
dc.titleComparison of Polarimetric SAR Features for Terrain Classification Using Incremental Trainingen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/PIERS.2017.8262319-
dc.identifier.scopus2-s2.0-85044924485en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridkiranyaz, serkan/0000-0003-1551-3397-
dc.authoridAhishali, Mete/0000-0003-0937-5194-
dc.authoridİnce, Türker/0000-0002-8495-8958-
dc.authorwosidKiranyaz, Serkan/AAK-1416-2021-
dc.identifier.startpage3258en_US
dc.identifier.endpage3262en_US
dc.identifier.wosWOS:000427596703052en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2086.pdf
  Restricted Access
340.4 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

7
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

5
checked on Nov 20, 2024

Page view(s)

94
checked on Nov 18, 2024

Download(s)

10
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.