Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/2941
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Unluturk, Mehmet S. | - |
dc.contributor.author | Oguz, Kaya | - |
dc.contributor.author | Atay, Coskun | - |
dc.date.accessioned | 2023-06-16T14:52:11Z | - |
dc.date.available | 2023-06-16T14:52:11Z | - |
dc.date.issued | 2009 | - |
dc.identifier.isbn | 978-960-474-065-9 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/2941 | - |
dc.description | 10th WSEAS International Conference on Neural Networks -- MAR 23-25, 2009 -- Prague, CZECH REPUBLIC | en_US |
dc.description.abstract | Speech and emotion recognition improve the quality of human computer interaction and allow more easy to use interfaces for every level of user in software applications. In this study, we have developed the emotion recognition neural network (ERNN) to classify the voice signals for emotion recognition. The ERNN has 128 input nodes, 20 hidden neurons, and three summing Output nodes. A set of 97932 training sets is used to train the ERNN. A new set of 24483 testing sets is utilized to test the EPNN performance. The samples tested for voice recognition are acquired from the movies Anger Management and Pick of Destiny. ERNN achieves an average recognition performance of 100%. This high level of recognition suggests that the ERNN is a promising method for emotion recognition in computer applications. | en_US |
dc.description.sponsorship | WSEAS | en_US |
dc.language.iso | en | en_US |
dc.publisher | World Scientific And Engineering Acad And Soc | en_US |
dc.relation.ispartof | Nn'09: Proceedıngs of the 10Th Wseas Internatıonal Conference on Neural Networks | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Back propagation learning algorithm | en_US |
dc.subject | Neural network | en_US |
dc.subject | Emotion | en_US |
dc.subject | Speech | en_US |
dc.subject | Power Spectrum | en_US |
dc.subject | Fast-Fourier Transform (FFT) | en_US |
dc.title | Emotion Recognition Using Neural Networks | en_US |
dc.type | Conference Object | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Oguz, Kaya/0000-0002-1860-9127 | - |
dc.authorwosid | Oguz, Kaya/A-1812-2016 | - |
dc.identifier.startpage | 82 | en_US |
dc.identifier.endpage | 85 | en_US |
dc.identifier.wos | WOS:000265636900013 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.openairetype | Conference Object | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | reserved | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | 05.04. Software Engineering | - |
crisitem.author.dept | 05.05. Computer Engineering | - |
Appears in Collections: | WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
2107.pdf Restricted Access | 204.42 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
WEB OF SCIENCETM
Citations
4
checked on Nov 20, 2024
Page view(s)
60
checked on Nov 25, 2024
Download(s)
6
checked on Nov 25, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.