Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2941
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUnluturk, Mehmet S.-
dc.contributor.authorOguz, Kaya-
dc.contributor.authorAtay, Coskun-
dc.date.accessioned2023-06-16T14:52:11Z-
dc.date.available2023-06-16T14:52:11Z-
dc.date.issued2009-
dc.identifier.isbn978-960-474-065-9-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2941-
dc.description10th WSEAS International Conference on Neural Networks -- MAR 23-25, 2009 -- Prague, CZECH REPUBLICen_US
dc.description.abstractSpeech and emotion recognition improve the quality of human computer interaction and allow more easy to use interfaces for every level of user in software applications. In this study, we have developed the emotion recognition neural network (ERNN) to classify the voice signals for emotion recognition. The ERNN has 128 input nodes, 20 hidden neurons, and three summing Output nodes. A set of 97932 training sets is used to train the ERNN. A new set of 24483 testing sets is utilized to test the EPNN performance. The samples tested for voice recognition are acquired from the movies Anger Management and Pick of Destiny. ERNN achieves an average recognition performance of 100%. This high level of recognition suggests that the ERNN is a promising method for emotion recognition in computer applications.en_US
dc.description.sponsorshipWSEASen_US
dc.language.isoenen_US
dc.publisherWorld Scientific And Engineering Acad And Socen_US
dc.relation.ispartofNn'09: Proceedıngs of the 10Th Wseas Internatıonal Conference on Neural Networksen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBack propagation learning algorithmen_US
dc.subjectNeural networken_US
dc.subjectEmotionen_US
dc.subjectSpeechen_US
dc.subjectPower Spectrumen_US
dc.subjectFast-Fourier Transform (FFT)en_US
dc.titleEmotion Recognition Using Neural Networksen_US
dc.typeConference Objecten_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridOguz, Kaya/0000-0002-1860-9127-
dc.authorwosidOguz, Kaya/A-1812-2016-
dc.identifier.startpage82en_US
dc.identifier.endpage85en_US
dc.identifier.wosWOS:000265636900013en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.grantfulltextreserved-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
crisitem.author.dept05.04. Software Engineering-
crisitem.author.dept05.05. Computer Engineering-
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2107.pdf
  Restricted Access
204.42 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

4
checked on Nov 20, 2024

Page view(s)

60
checked on Nov 25, 2024

Download(s)

6
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.