Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/2946
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cigdem, Ozkan | - |
dc.contributor.author | Horuz, Erencan | - |
dc.contributor.author | Soyak, Refik | - |
dc.contributor.author | Aydeniz, Burhan | - |
dc.contributor.author | Sulucay, Aysu | - |
dc.contributor.author | Oguz, Kaya | - |
dc.contributor.author | Demirel, Hasan | - |
dc.date.accessioned | 2023-06-16T14:52:12Z | - |
dc.date.available | 2023-06-16T14:52:12Z | - |
dc.date.issued | 2019 | - |
dc.identifier.isbn | 978-1-7281-1013-4 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/2946 | - |
dc.description | International Scientific Meeting on Electrical-Electronics and Biomedical Engineering and Computer Science (EBBT) -- APR 24-26, 2019 -- Istanbul Arel Univ, Kemal Gozukara Campus, Istanbul, TURKEY | en_US |
dc.description.abstract | Three-Dimensional Magnetic Resonance Imaging (3D-MRI) and Computer-Aided Detection (CAD) have been widely studied in the detection and diagnosis of neuroanatomical abnormalities, including bipolar disorder (BD). Pre-processing of 3D-MRI scans plays an important role in post-processing. In this study, Voxel-Based Morphometry (VBM) is used to compare the morphological differences at the grey matter (GM) and white matter (WM) of BD subjects versus healthy controls (HCs). The effects of using different covariates (i.e. total intracranial volume (TIV), age, sex, and their combinations) on classification of BDs from HCs have been investigated for GM-only, WM-only, and their combination. 3D masks for GM and WM are generated separately by using local differences between BPs and HCs and the two sample t-test method. Principle component analysis based dimensionality reduction and support vector machine with Gaussian kernel are employed for classification of 26 BDs and 38 HCs obtained from Ege University, School of Medicine, Department of Psychiatry. The results indicate that using only TIV as a covariate provides more robust results for BD classification compared to other covariate combinations. Furthermore, the combination of GM and WM improves classification performance. The highest classification accuracies obtained for GM, WM, and their combination are 70.30%, 79.70%, and 82.80% respectively. | en_US |
dc.description.sponsorship | IEEE Turkey Sect,IEEE EMB,Erasmus+,Europass | en_US |
dc.language.iso | tr | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2019 Scıentıfıc Meetıng on Electrıcal-Electronıcs & Bıomedıcal Engıneerıng And Computer Scıence (Ebbt) | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Bipolar disorder | en_US |
dc.subject | PCA | en_US |
dc.subject | SVM | en_US |
dc.subject | SPM12 | en_US |
dc.subject | CAT12 | en_US |
dc.subject | Brain | en_US |
dc.subject | Risk | en_US |
dc.title | Effects of Covariates on Classification of Bipolar Disorder Using Structural MRI | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/EBBT.2019.8741586 | - |
dc.identifier.scopus | 2-s2.0-85068584796 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Oguz, Kaya/0000-0002-1860-9127 | - |
dc.authorid | Aydeniz, Burhan/0000-0002-5629-2335 | - |
dc.authorid | Unay, Devrim/0000-0003-3478-7318 | - |
dc.authorid | eker, mehmet cagdas/0000-0001-5496-9587 | - |
dc.authorwosid | Oguz, Kaya/A-1812-2016 | - |
dc.authorwosid | Aydeniz, Burhan/GYU-5547-2022 | - |
dc.authorwosid | eker, mehmet cagdas/A-9215-2018 | - |
dc.authorwosid | Unay, Devrim/AAE-6908-2020 | - |
dc.authorwosid | Gönül, Ali Saffet/Z-3031-2019 | - |
dc.identifier.wos | WOS:000491430200006 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.grantfulltext | reserved | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | tr | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.05. Computer Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
2109.pdf Restricted Access | 2.03 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
3
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
1
checked on Nov 20, 2024
Page view(s)
70
checked on Nov 18, 2024
Download(s)
6
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.