Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2969
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKisa, Deniz Hande-
dc.contributor.authorOzdemir, Mehmet Akif-
dc.contributor.authorGuren, Onan-
dc.contributor.authorAkan, Aydin-
dc.date.accessioned2023-06-16T14:52:15Z-
dc.date.available2023-06-16T14:52:15Z-
dc.date.issued2022-
dc.identifier.isbn978-90-827970-9-1-
dc.identifier.issn2076-1465-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/2969-
dc.description30th European Signal Processing Conference (EUSIPCO) -- AUG 29-SEP 02, 2022 -- Belgrade, SERBIAen_US
dc.description.abstractArtificial intelligence is effectively utilized for hand gesture classification in myoelectric systems. In this study, hand movement classification is performed with ML algorithms using electromyography (EMG) signals of 7 hand gestures. The Hilbert-Huang Transform (HHT) was applied to the preprocessed EMG signals to obtain the Hilbert-Huang spectrum (HHS). Six different Gray Level Co-occurrence Matrix (GLCM)-based features were extracted from HHS images. In order to validate the proposed method, the same features were extracted from the snapshots of EMG signals and intrinsic mode functions (IMF) extracted by empirical mode decomposition (EMD), separately. These features are classified with 29 different Machine learning (ML) approaches in the MATLAB (R) environment. Among these three approaches, the HHS-based novel method yielded the best performance, with an accuracy of 90.87% from the Cubic Support Vector Machine (SVM). The novel HHS and GLCM-based approach may be used in EMG-based biomedical systems as a promising alternative.en_US
dc.description.sponsorshipEuropean Assoc Signa Procen_US
dc.description.sponsorshipIzmir Katip Celebi University Scientific Research Projects Coordination Unit [2021-ODL-MUMF-0004, 2022-GAP-MUMF-0001]; Scientific and Technical Research Council of Turkey (TUBITAK) [120E512]en_US
dc.description.sponsorshipThis work was supported by the Izmir Katip Celebi University Scientific Research Projects Coordination Unit [grant numbers 2021-ODL-MUMF-0004, 2022-GAP-MUMF-0001]; and the Scientific and Technical Research Council of Turkey (TUBITAK) [grant number 120E512].en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2022 30Th European Sıgnal Processıng Conference (Eusıpco 2022)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectElectromyographyen_US
dc.subjectGLCMen_US
dc.subjecttime-frequency analysisen_US
dc.subjectmachine learningen_US
dc.subjectEMDen_US
dc.titleClassification of Hand Gestures using sEMG Signals and Hilbert-Huang Transformen_US
dc.typeConference Objecten_US
dc.identifier.scopus2-s2.0-85141010312en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridOzdemir, Mehmet Akif/0000-0002-8758-113X-
dc.authorwosidOzdemir, Mehmet Akif/G-7952-2018-
dc.authorwosidGüren, Onan/HKF-6479-2023-
dc.identifier.startpage1293en_US
dc.identifier.endpage1297en_US
dc.identifier.wosWOS:000918827600253en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2120.pdf
  Restricted Access
677.1 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

Page view(s)

80
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.