Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2997
Title: EEG Based Mental Workload Estimation System
Authors: Cebeci, Bora
Akan, Aydin
Sutcubasi, Bemis
Keywords: mental workload
n-back test
multivariate empirical mode decomposition
human machine interface
human machine interaction
Publisher: IEEE
Abstract: This In this study, a system is proposed to predict mental workload for human-machine interface applications. EEG signals were recorded by performing 2-back test, consisting of conditioner and target stimulus, which is usually utilized to test working memory and decision-making processes. It is aimed here to find the features that will reveal the temporal and spatial relationships to be used in the estimation of slow responses from EEG signals. The Multivariate Empirical Mode Decomposition (MEMD) method, which stands out as a data-driven method in the analysis of non-stationary signals, was used for the analysis of EEG signals recorded from subjects. Positive and negative potentials with different latencies at the EEG stimulus period are averaged to select the most discriminative time segments. Supported Vector Machine (SVM) algorithm yields the highest prediction performance with selected features. In the evaluation where all participants average EEG data was used, the success was 64.5% (kappa = 0.29) and the classification success for a single randomly selected participant is obtained as 80% (kappa = 0.61).
Description: 28th Signal Processing and Communications Applications Conference (SIU) -- OCT 05-07, 2020 -- ELECTR NETWORK
URI: https://hdl.handle.net/20.500.14365/2997
ISBN: 978-1-7281-7206-4
ISSN: 2165-0608
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
2143.pdf
  Restricted Access
254.29 kBAdobe PDFView/Open    Request a copy
Show full item record



CORE Recommender

Page view(s)

68
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.