Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3028
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUlucan, Oguzhan-
dc.contributor.authorKarakaya, Diclehan-
dc.contributor.authorTurkan, Mehmet-
dc.date.accessioned2023-06-16T14:53:43Z-
dc.date.available2023-06-16T14:53:43Z-
dc.date.issued2019-
dc.identifier.isbn978-1-7281-2868-9-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3028-
dc.descriptionInnovations in Intelligent Systems and Applications Conference (ASYU) -- OCT 31-NOV 02, 2019 -- Izmir, TURKEYen_US
dc.description.abstractUnder unsuitable sales conditions, red meat containing rich amount of protein might receive a negative perception from consumers. Importantly, nutrients lose their effectiveness, while at the same time the formation of harmful microorganisms becomes a threat to human health. The main purpose of this study is to keep the quality of the open department sales service offered to the consumers in the retail red meat sector at the highest level, to ensure the sustainability of resources and to provide immediate economic precautions by reducing the disposal of the red meat due to possible deterioration. To do so, one tray of meat cubes has been monitored for a long time with a stable camera mounted on a pilot red meat counter and RGB images have been acquired in every two minutes. In parallel, expert data has been gathered and used as reference labels. After a preprocessing mechanism on the acquired images, a deep convolutional neural networks architecture has been modeled and trained to classify images as fresh or spoiled. The obtained experimental results and comparisons prove that deep learning methods will be very successful in this research field. However, the most important challenge in this subject is to collect large volumes of training datasets of various types of meat and meat products which are individually labeled by food experts.en_US
dc.description.sponsorshipYasar Univ,IEEE Turkey Sect,Yildiz Teknik Univ,Idea,Siemensen_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof2019 Innovatıons in Intellıgent Systems And Applıcatıons Conference (Asyu)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectmeat quality assessmenten_US
dc.subjectdigital image processingen_US
dc.subjectcomputer visionen_US
dc.subjectmachine learningen_US
dc.subjectdeep learningen_US
dc.subjectNeural-Networken_US
dc.subjectElectronic Nosesen_US
dc.subjectComputer Visionen_US
dc.subjectFood Qualityen_US
dc.subjectPork Coloren_US
dc.subjectDrip-Lossen_US
dc.subjectTextureen_US
dc.subjectPredictionen_US
dc.subjectBeefen_US
dc.subjectClassificationen_US
dc.titleMeat Quality Assessment based on Deep Learningen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ASYU48272.2019.8946388-
dc.identifier.scopus2-s2.0-85078346651en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridUlucan, Oguzhan/0000-0003-2077-9691-
dc.authoridTurkan, Mehmet/0000-0002-9780-9249-
dc.authoridUlucan, Oguzhan/0000-0003-2077-9691-
dc.authorwosidUlucan, Oguzhan/AAU-5143-2021-
dc.authorwosidTurkan, Mehmet/AGQ-8084-2022-
dc.authorwosidKarakaya, Diclehan/AAU-5155-2021-
dc.authorwosidUlucan, Oguzhan/AAY-8794-2020-
dc.identifier.startpage62en_US
dc.identifier.endpage66en_US
dc.identifier.wosWOS:000631252400011en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2162.pdf
  Restricted Access
816.34 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

10
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 20, 2024

Page view(s)

170
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.