Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3029
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarakaya, Diclehan-
dc.contributor.authorUlucan, Oguzhan-
dc.contributor.authorTurkan, Mehmet-
dc.date.accessioned2023-06-16T14:53:43Z-
dc.date.available2023-06-16T14:53:43Z-
dc.date.issued2019-
dc.identifier.isbn978-1-7281-2868-9-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3029-
dc.descriptionInnovations in Intelligent Systems and Applications Conference (ASYU) -- OCT 31-NOV 02, 2019 -- Izmir, TURKEYen_US
dc.description.abstractAutomatic classification of food freshness plays a significant role in the food industry. Food spoilage detection from production to consumption stages needs to be performed minutely. Traditional methods which detect the spoilage of food are slow, laborious, subjective and time consuming. As a result, fast and accurate automatic methods need to be introduced to industrial applications. This study comparatively analyses an image dataset containing samples of three types of fruits to distinguish fresh samples from those of rotten. The proposed vision based framework utilizes histograms, gray level co-occurrence matrices, bag of features and convolutional neural networks for feature extraction. The classification process is carried out through well-known support vector machines based classifiers. After testing several experimental scenarios including binary and multi-class classification problems, it turns out to be the highest success rates are obtained consistently with the adoption of the convolutional neural networks based features.en_US
dc.description.sponsorshipYasar Univ,IEEE Turkey Sect,Yildiz Teknik Univ,Idea,Siemensen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2019 Innovatıons in Intellıgent Systems And Applıcatıons Conference (Asyu)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectfruit freshness classificationen_US
dc.subjectfruit classificationen_US
dc.subjectfeature extractionen_US
dc.subjectsupport vector machinesen_US
dc.subjectVisionen_US
dc.titleA Comparative Analysis on Fruit Freshness Classificationen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ASYU48272.2019.8946385-
dc.identifier.scopus2-s2.0-85078329245-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridUlucan, Oguzhan/0000-0003-2077-9691-
dc.authoridTurkan, Mehmet/0000-0002-9780-9249-
dc.authoridUlucan, Oguzhan/0000-0003-2077-9691-
dc.authoridKarakaya, Diclehan/0000-0002-7059-302X-
dc.authorwosidUlucan, Oguzhan/AAY-8794-2020-
dc.authorwosidKarakaya, Diclehan/AAU-5155-2021-
dc.authorwosidUlucan, Oguzhan/AAU-5143-2021-
dc.authorwosidTurkan, Mehmet/AGQ-8084-2022-
dc.identifier.startpage39en_US
dc.identifier.endpage42en_US
dc.identifier.wosWOS:000631252400006-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.openairetypeConference Object-
item.grantfulltextreserved-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2163.pdf
  Restricted Access
1.15 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

40
checked on Apr 2, 2025

WEB OF SCIENCETM
Citations

8
checked on Apr 2, 2025

Page view(s)

116
checked on Mar 31, 2025

Download(s)

6
checked on Mar 31, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.