Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/3029
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Karakaya, Diclehan | - |
dc.contributor.author | Ulucan, Oguzhan | - |
dc.contributor.author | Turkan, Mehmet | - |
dc.date.accessioned | 2023-06-16T14:53:43Z | - |
dc.date.available | 2023-06-16T14:53:43Z | - |
dc.date.issued | 2019 | - |
dc.identifier.isbn | 978-1-7281-2868-9 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/3029 | - |
dc.description | Innovations in Intelligent Systems and Applications Conference (ASYU) -- OCT 31-NOV 02, 2019 -- Izmir, TURKEY | en_US |
dc.description.abstract | Automatic classification of food freshness plays a significant role in the food industry. Food spoilage detection from production to consumption stages needs to be performed minutely. Traditional methods which detect the spoilage of food are slow, laborious, subjective and time consuming. As a result, fast and accurate automatic methods need to be introduced to industrial applications. This study comparatively analyses an image dataset containing samples of three types of fruits to distinguish fresh samples from those of rotten. The proposed vision based framework utilizes histograms, gray level co-occurrence matrices, bag of features and convolutional neural networks for feature extraction. The classification process is carried out through well-known support vector machines based classifiers. After testing several experimental scenarios including binary and multi-class classification problems, it turns out to be the highest success rates are obtained consistently with the adoption of the convolutional neural networks based features. | en_US |
dc.description.sponsorship | Yasar Univ,IEEE Turkey Sect,Yildiz Teknik Univ,Idea,Siemens | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2019 Innovatıons in Intellıgent Systems And Applıcatıons Conference (Asyu) | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | fruit freshness classification | en_US |
dc.subject | fruit classification | en_US |
dc.subject | feature extraction | en_US |
dc.subject | support vector machines | en_US |
dc.subject | Vision | en_US |
dc.title | A Comparative Analysis on Fruit Freshness Classification | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/ASYU48272.2019.8946385 | - |
dc.identifier.scopus | 2-s2.0-85078329245 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Ulucan, Oguzhan/0000-0003-2077-9691 | - |
dc.authorid | Turkan, Mehmet/0000-0002-9780-9249 | - |
dc.authorid | Ulucan, Oguzhan/0000-0003-2077-9691 | - |
dc.authorid | Karakaya, Diclehan/0000-0002-7059-302X | - |
dc.authorwosid | Ulucan, Oguzhan/AAY-8794-2020 | - |
dc.authorwosid | Karakaya, Diclehan/AAU-5155-2021 | - |
dc.authorwosid | Ulucan, Oguzhan/AAU-5143-2021 | - |
dc.authorwosid | Turkan, Mehmet/AGQ-8084-2022 | - |
dc.identifier.startpage | 39 | en_US |
dc.identifier.endpage | 42 | en_US |
dc.identifier.wos | WOS:000631252400006 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.grantfulltext | reserved | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
2163.pdf Restricted Access | 1.15 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
32
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
6
checked on Nov 20, 2024
Page view(s)
86
checked on Nov 18, 2024
Download(s)
6
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.